

BCA PPT

Name of Faculty . Mr Santosh Kulkarni

Subject Fundamentals of Computer

Programme:- BCA I Sem I

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of

Management Career Development and

Research.
156-B Railway Lines Solapur.

Affilated PAH Solapur University

Name of Faculty :-Santosh Kulkarni

Subject :Fundamentals of Computer

Program:-BCA I SEM I

Computer Memory

Computer memory is divided into main (or primary) memory and auxiliary (or

secondary) memory. Main memory holds instructions and data when a program is executing,

while auxiliary memory holds data and programs not currently in use and provides long-term

storage.

• 1. Random Access Memory (RAM) –

• It is also called as read write memory or the main memory or the primary memory.

• The programs and data that the CPU requires during execution of a program are stored in

this memory.

• It is a volatile memory as the data loses when the power is turned off.

• RAM is further classified into two types- SRAM (Static Random Access Memory) and DRAM

(Dynamic Random Access Memory).

• Read Only Memory (ROM) –

• Stores crucial information essential to operate the system, like the program essential to

boot the computer.

• It is not volatile.

• Always retains its data.

• Used in embedded systems or where the programming needs no change.

• Used in calculators and peripheral devices.

• ROM is further classified into 4 types- ROM, PROM, EPROM, and EEPROM.

• Types of Read Only Memory (ROM) –

• PROM (Programmable read-only memory) – It can be programmed by user. Once

programmed, the data and instructions in it cannot be changed.

• EPROM (Erasable Programmable read only memory) – It can be reprogrammed. To erase data

from it, expose it to ultra violet light. To reprogram it, erase all the previous data.

• EEPROM (Electrically erasable programmable read only memory) – The data can be erased by

applying electric field, no need of ultra violet light. We can erase only portions of the chip.

Secondary Starage Devices

• Magnetic Tape memory

• Magnetic drums, magnetic tape and magnetic disks are types of magnetic memory. These

memories use property for magnetic memory. Here, we have explained about magnetic tape in

brief.

• Magnetic Tape memory :

In magnetic tape only one side of the ribbon is used for storing data. It is sequential memory which

contains thin plastic ribbon to store data and coated by magnetic oxide. Data read/write speed

is slower because of sequential access. It is highly reliable which requires magnetic tape drive

writing and reading data.

• Advantages :

• These are inexpensive, i.e., low cost memories.

• It provides backup or archival storage.

• It can be used for large files.

• It can be used for copying from disk files.

• It is a reusable memory.

• It is compact and easy to store on racks.

• Disadvantages :

• Sequential access is the disadvantage, means it does not allow access randomly or directly.

• It requires caring to store, i.e., vulnerable humidity, dust free, and suitable environment.

• It stored data cannot be easily updated or modified, i.e., difficult to make updates on data.

• A magnetic disk is a storage device that uses a magnetization process to read, write, rewrite

and access data. It is covered with a magnetic coating and stores data in the form of tracks,

spots and sectors. Hard disks, zip disks and floppy disks are common examples of magnetic

disks.

• Magnetic disks are the most common backing storage device. Data is stored using magnetised

spots called domains on the disk. Each domain can store one bit of data (a 0 or a 1). ... Data is

read from the disk using a disk head which moves mechanically about the disk (rather like a

record player tone arm).

• A magnetic disk is a storage device that uses a magnetization process to write, rewrite and

access data. It is covered with a magnetic coating and stores data in the form of tracks, spots

and sectors. Hard disks, zip disks and floppy disks are common examples of magnetic disks

Compact Disk

• A compact disc is a portable storage medium that can be used to record, store and play back

audio, video and other data in digital form.

• Most of a CD is made from a tough, brittle plastic called polycarbonate. Sandwiched in the

middle there is a thin layer of aluminum. Finally, on top of the aluminum, is a protective layer

of plastic and lacquer. The first thing you notice about a CD is that it is shiny on one side and

dull on the othe

• ypes of Compact Disk (CD) :

These are various types of CD as follows below.

• CD-R – It is a blank CD in which data can be stored once which is known as CD-ROM after

storing data on it.

• CD-ROM – It became a ROM (read only memory), in which you can not update or delete data.

Only you can read data using a CD-drive.

• CD-RW – You can update or delete data multiple times, if you want to do so.

• Advantages of CD:

• It can store data for long time, i.e., durable memory.

• It is a reliable and widely used memory.

• It provides random data access.

• It can not be affected by the magnetic field.

• It is economical, i.e., stores more data in less space.

• Disadvantages of CD:

• It is a good memory but slower than a disk.

• Writing or copying data on CD is not easy.

• The surface of a CD is made of a polycarbonate layer with molded spiral tracks on the top.

The data are stored on the CD as a series of minute grooves which are known as 'pits' encoded on

these spiral tracks. The areas between the 'pits' are known as 'lands'. ... A CD burner is used to

write (burn) the data on a CD

Optical storage devices save data as patterns of dots that can be read using light. A laser

beam is the usual light source. The data on the storage medium is read by bouncing

the laser beam off the surface of the medium. ... This process is known as 'burning' data

onto a disc.

Writing Data

•Optical storage devices save data as patterns of dots that can be read using light. A laser beam is the

usual light source. The data on the storage medium is read by bouncing the laser beam off the surface

of the medium. ... This process is known as 'burning' data onto a disc.

•Reading Data

•Optical storage devices save data as patterns of dots that can be read using light. A laser beam is the

usual light source. The data on the storage medium is read by bouncing the laser beam off the surface

of the medium. ... This process is known as 'burning' data onto a disc.

Input Devices

• In computing, an input device is a piece of equipment used to provide data

and control signals to an information processing system such as a computer or information

appliance. Examples of input devices include keyboards, mouse, scanners, digital cameras,

joysticks, and microphones.

Keyboard

• Keyboard is most commonly used input device

• It converts Human Language in to machine language

• The most commonly used keyboard is the IBM-101 keyboard. The keys are arranged in different

groups

•

• 1) Alphanumeric keys2) Numeric Key pad 3) Cursor Movement Keys 4) functiom Keys 5)

modifier Keys 6) special Purpoe Keys

• Alpha Numeric Keys This set Contains alphabetic ,numeric,and special Characters

• Numeric Key pad :- This set of keys act as numeric keys when numlock is on and act cursor

moverment when numlock is off

• Cursor Movement keys :- The four Keys up,down ,left, right for moving cursor

• Function keys :- The 12 keys F1 to F12 represent on peration . The purpose of each key

depends on the application being used

• Special purpose keys:-

• These keys perform specialised functions . They are Esc, Pause,Insert,Delete etc

• Modifier keys:- They are used to modify the input of other keys they are used by holding

down the modifier key while pressing another . They are Shift ,Ctrl and Alt

• Mouse

•

Light Pen

• It is a pen based system we can hold the pen in our hand and directly point with it on the

screen to select menu items or icons or directly draw graphics on the screen

• A joystick is a pointing device. To make the movement of the spherical ball easier the sperical

ball which moves in a socket has a stick mounted on it The stick can be moved forward or

backward ,left or right to move and position the graphics cursor at the desired position on most

joystick a button on the top is provided to select option which is currently pointed by the

cursor

.The button is clicked to make this selection. Typical uses of joysticks include video games ,for

controlling industirial robots.

Scanner

• A Scanner is an input device. Which translates paper documents into an electronic

format, which can be stored in a computer.

• The input documents may be typed text, pictures , graphics

• Scanner come in various shapes and sizes.

• The two commonly used types are

• 1) flatbed Scanner

• It is like a copy machine Which consists of a box having a glass plate on its top

The document to be scanned is placed upside down on the glass plate The light source is

situate below the glass plate and moves horizentally from left to right and right to left

• When activated

Hand held scanner

• It can be held in hand so it is called as hand held scanner

• To scan a document the scanner is slowly dragged from one end of the document to its

other end with its light on .

• Micr is used by banking industry for faster processing of the large volume of cheques being

handled everyday Banks which employ MICR technology use a special type of cheque.

• The bank’s identification code(name,branch) account numberr, and the cheque number are

preprinted by using a special characters with a special ink which contains magnitizable

particles of iron oxide

OMR (Optical Mark Reader)

Thank You !!!

Any Queries
9420779969/kulkarnisantosh52

73

@gmail.com

 Mrs. Snehal Pathak 17

Name of Faculty . Mr Santosh Kulkarni

Subject Cyber Law Topic No 2
Programme:- BCA I Sem I

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of Management

Career Development and Research.
156-B Railway Lines Solapur.

Affilated PAH Solapur University

I

Security Aspect
Aspect

• Electronic data and its transmission are
vulnerable to unauthorised interference form
criminals and persons having vested interests.
Ensuring security of data through legal and
technical means has become a matter of
concern. A legal infrastructure has become
imperative to protect data and information.

• Intellectual Property Rights (IPR) and Cyber
Laws cannot be separated, and online content
must be protected. ... Those rights are
protected under IPR. Patent, Copyright,
Trademarks, Trade Secrets, Industrial and
Layout Designs, Geographical Indications etc.
are intellectual property rights.

Criminal Aspect

• Cyber crimes can involve criminal activities
that are traditional in nature, such as theft,
fraud, forgery, defamation and mischief, all of
which are subject to the Indian Penal Code.
The crime of computers has also given birth
to a gamut of new age crimes that are
addressed by the Information Technology Act,
2000.

Faculty-Nilima Mondhe

 Class - BCA-I

Sem- II

Subject- Operating System

Operating System Definition and Function

Computers are made up of of Hardware and software), Hardware

can only understand machine code (in the form of 0 and 1) which

doesn't make any sense to a naive user.

We need a system which can act as an intermediary and manage

all the processes and resources present in the system.

An Operating System can be defined as an interface between

user and hardware. It is responsible for the execution of all the

processes,

Resource Allocation,

 CPU management,

File Management and many other tasks.

The purpose of an operating system is to provide an environment

in which a user can execute programs in convenient and efficient

manner.

Structure of a Computer System

A Computer System consists of:

o Users (people who are using the computer)

o Application Programs (Compilers, Databases, Games, Video

player, Browsers, etc.)

o System Programs (Shells, Editors, Compilers, etc.)

o Operating System (A special program which acts as an

interface between user and hardware)

o Hardware (CPU, Disks, Memory, etc)

https://www.javatpoint.com/cpu-full-form

What does an Operating system do?

1. Process Management

2. Process Synchronization

3. Memory Management

4. CPU Scheduling

5. File Management

6. Security

Types of Operating Systems

An operating system is a well-organized collection of programs that

manages the computer hardware. It is a type of system software that is

responsible for the smooth functioning of the computer system.

.

Batch Operating System

In the 1970s, Batch processing was very popular. In this technique, similar types of

jobs were batched together and executed in time. People were used to having a

single computer which was called a mainframe.

In Batch operating system, access is given to more than one person; they submit

their respective jobs to the system for the execution.

The system put all of the jobs in a queue on the basis of first come first serve and

then executes the jobs one by one. The users collect their respective output when

all the jobs get executed.

47.7M

947

Exception Handling in Java - Javatpoint

The purpose of this operating system was mainly to transfer control from one job

to another as soon as the job was completed. It contained a small set of programs

called the resident monitor that always resided in one part of the main memory.

The remaining part is used for servicing jobs.

Advantages of Batch OS

o The use of a resident monitor improves computer efficiency as it eliminates

CPU time between two jobs.

Disadvantages of Batch OS

1. Starvation

Batch processing suffers from starvation.

For Example:

There are five jobs J1, J2, J3, J4, and J5, present in the batch. If the execution time

of J1 is very high, then the other four jobs will never be executed, or they will have

to wait for a very long time. Hence the other processes get starved.

2. Not Interactive

Batch Processing is not suitable for jobs that are dependent on the user's input. If

a job requires the input of two numbers from the console, then it will never get it

in the batch processing scenario since the user is not present at the time of

execution.

Multiprogramming Operating System

Multiprogramming is an extension to batch processing where the CPU is always

kept busy. Each process needs two types of system time: CPU time and IO time.

In a multiprogramming environment, when a process does its I/O, The CPU can

start the execution of other processes. Therefore, multiprogramming improves the

efficiency of the system.

Advantages of Multiprogramming OS

o Throughout the system, it increased as the CPU always had one program to

execute.

o Response time can also be reduced.

Disadvantages of Multiprogramming OS

o Multiprogramming systems provide an environment in which various systems

resources are used efficiently, but they do not provide any user interaction

with the computer system.

Multiprocessing Operating System

In Multiprocessing, Parallel computing is achieved. There are more than one

processors present in the system which can execute more than one process at the

same time. This will increase the throughput of the system.

In Multiprocessing, Parallel computing is achieved. More than one processor

present in the system can execute more than one process simultaneously, which

will increase the throughput of the system.

Advantages of Multiprocessing operating system:

o Increased reliability: Due to the multiprocessing system, processing tasks

can be distributed among several processors. This increases reliability as if

one processor fails, the task can be given to another processor for

completion.

o Increased throughout: As several processors increase, more work can be

done in less.

Disadvantages of Multiprocessing operating System

o Multiprocessing operating system is more complex and sophisticated as it

takes care of multiple CPUs simultaneously.

Multitasking Operating System

The multitasking operating system is a logical extension of a multiprogramming

system that enables multiple programs simultaneously. It allows a user to perform

more than one computer task at the same time.

Advantages of Multitasking operating system

o This operating system is more suited to supporting multiple users

simultaneously.

o The multitasking operating systems have well-defined memory management.

Disadvantages of Multitasking operating system

o The multiple processors are busier at the same time to complete any task in a

multitasking environment, so the CPU generates more heat.

Network Operating System

An Operating system, which includes software and associated protocols to

communicate with other computers via a network conveniently and cost-

effectively, is called Network Operating System.

Advantages of Network Operating System

o In this type of operating system, network traffic reduces due to the division

between clients and the server.

o This type of system is less expensive to set up and maintain.

Disadvantages of Network Operating System

o In this type of operating system, the failure of any node in a system affects

the whole system.

o Security and performance are important issues. So trained network

administrators are required for network administration.

Real Time Operating System

In Real-Time Systems, each job carries a certain deadline within which the job is

supposed to be completed, otherwise, the huge loss will be there, or even if the

result is produced, it will be completely useless.

The Application of a Real-Time system exists in the case of military applications, if

you want to drop a missile, then the missile is supposed to be dropped with a

certain precision.

Advantages of Real-time operating system:

o Easy to layout, develop and execute real-time applications under the real-

time operating system.

o In a Real-time operating system, the maximum utilization of devices and

systems.

Disadvantages of Real-time operating system:

o Real-time operating systems are very costly to develop.

o Real-time operating systems are very complex and can consume critical CPU

cycles.

Time-Sharing Operating System

In the Time Sharing operating system, computer resources are allocated in a time-

dependent fashion to several programs simultaneously. Thus it helps to provide a

large number of user's direct access to the main computer. It is a logical extension

of multiprogramming. In time-sharing, the CPU is switched among multiple

programs given by different users on a scheduled basis.

A time-sharing operating system allows many users to be served simultaneously,

so sophisticated CPU scheduling schemes and Input/output management are

required.

Time-sharing operating systems are very difficult and expensive to build.

Advantages of Time Sharing Operating System

o The time-sharing operating system provides effective utilization and sharing

of resources.

o This system reduces CPU idle and response time.

Disadvantages of Time Sharing Operating System

o Data transmission rates are very high in comparison to other methods.

o Security and integrity of user programs loaded in memory and data need to

be maintained as many users access the system at the same time.

Distributed Operating System

The Distributed Operating system is not installed on a single machine, it is divided

into parts, and these parts are loaded on different machines. A part of the

distributed Operating system is installed on each machine to make their

communication possible. Distributed Operating systems are much more complex,

large, and sophisticated than Network operating systems because they also have

to take care of varying networking protocols.

Advantages of Distributed Operating System

o The distributed operating system provides sharing of resources.

o This type of system is fault-tolerant.

Disadvantages of Distributed Operating System

o Protocol overhead can do

Process Management in OS

A Program does nothing unless its instructions are executed by a

CPU. A program in execution is called a process. In order to

accomplish its task, process needs the computer resources.

There may exist more than one process in the system which may

require the same resource at the same time. Therefore, the

operating system has to manage all the processes and the

resources in a convenient and efficient way.

Some resources may need to be executed by one process at one

time to maintain the consistency otherwise the system can

become inconsistent and deadlock may occur.

The operating system is responsible for the following activities in

connection with Process Management

1. Scheduling processes and threads on the CPUs.

2. Creating and deleting both user and system processes.

3. Suspending and resuming processes.

4. Providing mechanisms for process synchronization.

5. Providing mechanisms for process communication.

Attributes of a process

The Attributes of the process are used by the Operating System to

create the process control block (PCB) for each of them. This is

also called context of the process. Attributes which are stored in

the PCB are described below.

1. Process ID

When a process is created, a unique id is assigned to the process

which is used for unique identification of the process in the

system.

2. Program counter

A program counter stores the address of the last instruction of the

process on which the process was suspended. The CPU uses this

address when the execution of this process is resumed.

3. Process State

The Process, from its creation to the completion, goes through

various states which are new, ready, running and waiting. We will

discuss about them later in detail.

4. Priority

Every process has its own priority. The process with the highest

priority among the processes gets the CPU first. This is also stored

on the process control block.

5. General Purpose Registers

Every process has its own set of registers which are used to hold

the data which is generated during the execution of the process.

6. List of open files

During the Execution, Every process uses some files which need to

be present in the main memory. OS also maintains a list of open

files in the PCB.

7. List of open devices

OS also maintain the list of all open devices which are used during

the execution of the process.

Process States

State Diagram

The process, from its creation to completion, passes through

various states. The minimum number of states is five.

The names of the states are not standardized although the

process may be in one of the following states during execution.

1. New

A program which is going to be picked up by the OS into the

main memory is called a new process.

46.6M

1K

Features of Java - Javatpoint

2. Ready

Whenever a process is created, it directly enters in the ready state,

in which, it waits for the CPU to be assigned. The OS picks the new

processes from the secondary memory and put all of them in the

main memory.

The processes which are ready for the execution and reside in the

main memory are called ready state processes. There can be many

processes present in the ready state.

3. Running

One of the processes from the ready state will be chosen by the

OS depending upon the scheduling algorithm. Hence, if we have

only one CPU in our system, the number of running processes for

a particular time will always be one. If we have n processors in the

system then we can have n processes running simultaneously.

4. Block or wait

From the Running state, a process can make the transition to the

block or wait state depending upon the scheduling algorithm or

the intrinsic behavior of the process.

When a process waits for a certain resource to be assigned or for

the input from the user then the OS move this process to the

block or wait state and assigns the CPU to the other processes.

5. Completion or termination

When a process finishes its execution, it comes in the termination

state. All the context of the process (Process Control Block) will

also be deleted the process will be terminated by the Operating

system.

6. Suspend ready

A process in the ready state, which is moved to secondary

memory from the main memory due to lack of the resources

(mainly primary memory) is called in the suspend ready state.

If the main memory is full and a higher priority process comes for

the execution then the OS have to make the room for the process

in the main memory by throwing the lower priority process out

into the secondary memory. The suspend ready processes remain

in the secondary memory until the main memory gets available.

7. Suspend wait

Instead of removing the process from the ready queue, it's better

to remove the blocked process which is waiting for some

resources in the main memory. Since it is already waiting for some

resource to get available hence it is better if it waits in the

secondary memory and make room for the higher priority

process. These processes complete their execution once the main

memory gets available and their wait is finished.

Operations on the Process

1. Creation

Once the process is created, it will be ready and come into the

ready queue (main memory) and will be ready for the execution.

2. Scheduling

Out of the many processes present in the ready queue, the

Operating system chooses one process and start executing it.

Selecting the process which is to be executed next, is known as

scheduling.

3. Execution

Once the process is scheduled for the execution, the processor

starts executing it. Process may come to the blocked or wait state

during the execution then in that case the processor starts

executing the other processes.

4. Deletion/killing

Once the purpose of the process gets over then the OS will kill the

process. The Context of the process (PCB) will be deleted and the

process gets terminated by the Operating system.

Scheduling Algorithms

There are various algorithms which are used by the Operating

System to schedule the processes on the processor in an efficient

way.

The Purpose of a Scheduling algorithm

1. Maximum CPU utilization

2. Fare allocation of CPU

3. Maximum throughput

4. Minimum turnaround time

5. Minimum waiting time

6. Minimum response time

There are the following algorithms which can be used to schedule

the jobs.

1. First Come First Serve

It is the simplest algorithm to implement. The process with the

minimal arrival time will get the CPU first. The lesser the arrival

time, the sooner will the process gets the CPU. It is the non-

preemptive type of scheduling.

2. Round Robin

In the Round Robin scheduling algorithm, the OS defines a time

quantum (slice). All the processes will get executed in the cyclic

way. Each of the process will get the CPU for a small amount of

time (called time quantum) and then get back to the ready queue

to wait for its next turn. It is a preemptive type of scheduling.

3. Shortest Job First

The job with the shortest burst time will get the CPU first. The

lesser the burst time, the sooner will the process get the CPU. It is

the non-preemptive type of scheduling.

4. Shortest remaining time first

It is the preemptive form of SJF. In this algorithm, the OS

schedules the Job according to the remaining time of the

execution.

5. Priority based scheduling

In this algorithm, the priority will be assigned to each of the

processes. The higher the priority, the sooner will the process get

the CPU. If the priority of the two processes is same then they will

be scheduled according to their arrival time.

6. Highest Response Ratio Next

In this scheduling Algorithm, the process with highest response

ratio will be scheduled next. This reduces the starvation in the

system.

FCFS Scheduling

First come first serve (FCFS) scheduling algorithm simply

schedules the jobs according to their arrival time. The job which

comes first in the ready queue will get the CPU first. The lesser the

arrival time of the job, the sooner will the job get the CPU. FCFS

scheduling may cause the problem of starvation if the burst time

of the first process is the longest among all the jobs.

Advantages of FCFS

o Simple

o Easy

o First come, First serv

Disadvantages of FCFS

1. The scheduling method is non preemptive, the process will

run to the completion.

2. Due to the non-preemptive nature of the algorithm, the

problem of starvation may occur.

3. Although it is easy to implement, but it is poor in

performance since the average waiting time is higher as

compare to other scheduling algorithms.

Example

Let's take an example of The FCFS scheduling algorithm. In the

Following schedule, there are 5 processes with process ID P0, P1,

P2, P3 and P4. P0 arrives at time 0, P1 at time 1, P2 at time 2, P3

arrives at time 3 and Process P4 arrives at time 4 in the ready

queue. The processes and their respective Arrival and Burst time

are given in the following table.

The Turnaround time and the waiting time are calculated by using

the following formula.

1. Turn Around Time = Completion Time - Arrival Time

2. Waiting Time = Turnaround time - Burst Time

The average waiting Time is determined by summing the

respective waiting time of all the processes and divided the sum

by the total number of processes.

Process

ID

Arrival

Time

Burst

Time

Completion

Time

Turn Around

Time

Waiting

Time

0 0 2 2 2 0

1 1 6 8 7 1

2 2 4 12 10 6

3 3 9 21 18 9

4 6 12 33 29 17

 Avg Waiting Time=31/5

 (Gantt chart)

n the Example, We have 3 processes named as P1, P2 and P3.

The Burt Time of process P1 is highest.

The Turnaround time and the waiting time in the following table,

are calculated by the formula,

5.9M

66

Competitive questions on Structures

1. Turn Around Time = Completion Time - Arrival Time

2. Waiting Time = Turn Around Time - Burst Time

In the First scenario, The Process P1 arrives at the first in the

queue although; the burst time of the process is the highest

among all. Since, the Scheduling algorithm, we are following is

FCFS hence the CPU will execute the Process P1 first.

In this schedule, the average waiting time of the system will be

very high. That is because of the convoy effect. The other

processes P2, P3 have to wait for their turn for 40 units of time

although their burst time is very low. This schedule suffers from

starvation.

Process

ID

Arrival

Time

Burst

Time

Completion

Time

Turn Around

Time

Waiting

Time

1 0 40 40 40 0

2 1 3 43 42 39

3 1 1 44 43 42

 Avg waiting Time = 81/3

In the Second scenario, If Process P1 would have arrived at the

last of the queue and the other processes P2 and P3 at earlier

then the problem of starvation would not be there.

Following example shows the deviation in the waiting times of

both the scenarios. Although the length of the schedule is same

that is 44 units but the waiting time will be lesser in this schedule.

Process

ID

Arrival

Time

Burst

Time

Completion

Time

Turn Around

Time

Waiting

Time

1 1 40 44 43 3

2 0 3 3 3 0

3 0 1 4 4 3

 Avg Waiting Time=6/3

Shortest Job First (SJF) Scheduling

Till now, we were scheduling the processes according to their

arrival time (in FCFS scheduling). However, SJF scheduling

algorithm, schedules the processes according to their burst time.

In SJF scheduling, the process with the lowest burst time, among

the list of available processes in the ready queue, is going to be

scheduled next.

However, it is very difficult to predict the burst time needed for a

process hence this algorithm is very difficult to implement in the

system.

Advantages of SJF

1. Maximum throughput

2. Minimum average waiting and turnaround time

Disadvantages of SJF

1. May suffer with the problem of starvation

2. It is not implementable because the exact Burst time for a

process can't be known in advance.

There are different techniques available by which, the CPU burst

time of the process can be determined. We will discuss them later

in detail.

Example

In the following example, there are five jobs named as P1, P2, P3,

P4 and P5. Their arrival time and burst time are given in the table

below.

PID Arrival

Time

Burst

Time

Completion

Time

Turn Around

Time

Waiting

Time

1 1 7 8 7 0

2 3 3 13 10 7

3 6 2 10 4 2

4 7 10 31 24 14

5 9 8 21 12 4

Since, No Process arrives at time 0 hence; there will be an empty

slot in the Gantt chart from time 0 to 1 (the time at which the first

process arrives).

According to the algorithm, the OS schedules the process which is

having the lowest burst time among the available processes in the

ready queue.

Till now, we have only one process in the ready queue hence the

scheduler will schedule this to the processor no matter what is its

burst time.

This will be executed till 8 units of time. Till then we have three

more processes arrived in the ready queue hence the scheduler

will choose the process with the lowest burst time.

Among the processes given in the table, P3 will be executed next

since it is having the lowest burst time among all the available

processes.

So that's how the procedure will go on in shortest job first

(SJF) scheduling algorithm.

 Avg Waiting Time = 27/5

Round Robin Scheduling Algorithm

Round Robin scheduling algorithm is one of the most popular

scheduling algorithm which can actually be implemented in most

of the operating systems. This is the preemptive version of first

come first serve scheduling. The Algorithm focuses on Time

Sharing. In this algorithm, every process gets executed in a cyclic

way. A certain time slice is defined in the system which is called

time quantum. Each process present in the ready queue is

assigned the CPU for that time quantum, if the execution of the

process is completed during that time then the process

will terminate else the process will go back to the ready

queue and waits for the next turn to complete the execution.

Advantages

1. It can be actually implementable in the system because it is

not depending on the burst time.

2. It doesn't suffer from the problem of starvation or convoy

effect.

3. All the jobs get a fare allocation of CPU.

Disadvantages

1. The higher the time quantum, the higher the response time

in the system.

2. The lower the time quantum, the higher the context

switching overhead in the system.

3. Deciding a perfect time quantum is really a very difficult task

in the system.

Introduction

When two or more process cooperates with each other, their

order of execution must be preserved otherwise there can be

conflicts in their execution and inappropriate outputs can be

produced.

A cooperative process is the one which can affect the execution of

other process or can be affected by the execution of other

process. Such processes need to be synchronized so that their

order of execution can be guaranteed.

The procedure involved in preserving the appropriate order of

execution of cooperative processes is known as Process

Synchronization. There are various synchronization mechanisms

that are used to synchronize the processes.

Race Condition

A Race Condition typically occurs when two or more threads try to

read, write and possibly make the decisions based on the memory

that they are accessing concurrently.

Critical Section

The regions of a program that try to access shared resources and

may cause race conditions are called critical section. To avoid race

condition among the processes, we need to assure that only one

process at a time can execute within the critical section.

BCA –I – Sem. –II Subject-Web Technology

Chapter 2

By : Mrs Nilima Mondhe

.

Prin. K. P. Mangalvedhekar Institute of Management

Career Development and Research.
156-B Railway Lines Solapur.

JQUERY

Created by Nilima Mondhe

BCA Dept

OBJECTIVE

To study basic concepts of jquery and jquery

programming.

INTRODUCTION TO JQUERY

 jQuery is a fast and concise JavaScript Library created by John Resig
in 2006 with a nice motto: Write less, do more. jQuery simplifies
HTML document traversing, event handling, animating, and Ajax
interactions for rapid web development. jQuery is a JavaScript toolkit
designed to simplify various tasks by writing less code. Here is the
list of important core features supported by jQuery −

 DOM manipulation − The jQuery made it easy to select DOM
elements, negotiate them and modifying their content by using cross-
browser open source selector engine called Sizzle.

 Event handling − The jQuery offers an elegant way to capture a
wide variety of events, such as a user clicking on a link, without the
need to clutter the HTML code itself with event handlers.

 AJAX Support − The jQuery helps you a lot to develop a responsive
and feature rich site using AJAX technology.

 Animations − The jQuery comes with plenty of built-in animation
effects which you can use in your websites.

 Lightweight − The jQuery is very lightweight library - about 19KB
in size (Minified and gzipped).

 Cross Browser Support − The jQuery has cross-browser support,
and works well in IE 6.0+, FF 2.0+, Safari 3.0+, Chrome and Opera
9.0+

 Latest Technology − The jQuery supports CSS3 selectors and basic
XPath syntax.

NEED OF JQUERY

There is a need of jquery because,

 It is very fast and extensible.

 It facilitates the users to write UI related function codes in
minimum possible lines.

 It improves the performance of an application.

 Browser's compatible web applications can be developed.

 It uses mostly new features of new browsers.

 So, we can say that out of the lot of JavaScript frameworks,
jQuery is the most popular and the most extendable. Many
of the biggest companies on the web use jQuery-

 Google

 Microsoft

 IBM

 Netflix

ADDING JQUERY TO WEB PAGES

 There are two ways to use jQuery.

 Local Installation − You can download jQuery

library on your local machine and include it in

your HTML code.

 CDN Based Version − You can include(URL)

jQuery library into your HTML code directly from

Content Delivery Network (CDN).

LOCAL INSTALLATION

<html>

<head>

<title>The jQuery Example</title>

<script type = "text/javascript" src = "/jquery/jquery-

2.1.3.min.js">

</script>

<script type = "text/javascript">

$(document).ready(

function() { document.write("Hello, World!"); }

);

</script> </head> <body> <h1>Hello</h1>

</body> </html>

CDN BASED VERSION

<html> <head>

<title>The jQuery Example</title>

<script type = "text/javascript" src =

"https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/

jquery.min.js"> </script>

<script type = "text/javascript">

$(document).ready(function() {

document.write("Hello, World!"); });

</script> </head>

<body> <h1>Hello</h1> </body>

</html>

JQUERY SYNTAX

 With jQuery we select (query) HTML elements and

perform "actions" on them.

 Basic syntax is: $(selector).action()

1. A $ sign to define/access jQuery

2. A (selector) to "query (or find)" HTML elements

3. A jQuery action() to be performed on the element(s)

 Examples:

1. $(this).hide() - hides the current element.

2. $("p").hide() - hides all <p> elements.

3. $(".test").hide() - hides all elements with

class="test".

4. $("#test").hide() - hides the element with id="test".

The Document Ready Event

jQuery methods syntax

$(document).ready(function(){

// jQuery methods go here...

});

Or

$(function(){

// jQuery methods go here...

});

This is to prevent any jQuery code from running
before the document is finished loading (is
ready).

JQUERY SELECTORS

 jQuery selectors are one of the most important parts

of the jQuery library.

 jQuery selectors allow you to select and manipulate

HTML element(s).

 jQuery selectors are used to "find" (or select) HTML

elements based on their name, id, classes, types,

attributes, values of attributes and much more. It's

based on the existing CSS Selectors, and in addition,

it has some own custom selectors.

 All selectors in jQuery start with the dollar sign and

parentheses: $().

https://www.w3schools.com/cssref/css_selectors.asp

The element Selector

 The jQuery element selector selects elements based
on the element name.

 Eg -$("p")

The #id Selector

 The jQuery #id selector uses the id attribute of an
HTML tag to find the specific element.

 An id should be unique within a page, so you should
use the #id selector when you want to find a single,
unique element.

 Eg- $("#test")

The .class Selector

 The jQuery .class selector finds elements with a
specific class.

 To find elements with a specific class, write a period
character, followed by the name of the class:

 Eg $(".test")

More examples of selectors

$("*")---Selects all elements

$(this)---Selects the current HTML

$("p.intro")---Selects all <p> elements with class="intro“

For eg

<html>

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("p").hide();

});

});

</script>

</head>

<body>

<h2>This is a heading</h2>

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

<button>Click me to hide paragraphs</button>

</body>

</html>

JQUERY EVENT METHODS

 The action made on web page which gives

response is known as events

 An event represents the precise moment when

something happens.

Examples:

 moving a mouse over an element

 selecting a radio button

 clicking on an element

HERE ARE SOME COMMON DOM EVENTS:

JQUERY SYNTAX FOR EVENT METHODS

 In jQuery, most DOM events have an equivalent
jQuery method.

1. Click event-To assign a click event to all
paragraphs on a page, we can do this:

 $("p").click();

 The next step is to define what should happen
when the event fires. You must pass a function to
the event:

 $("p").click(function(){
// action goes here!!

});

 Click event eg

<html>

<head>

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>

<script>

$(document).ready(function(){

$("p").click(function(){

$(this).hide();

});

});

</script>

</head>

<body>

<p>If you click on me, I will disappear.</p>

<p>Click me away!</p>

<p>Click me too!</p>

</body>

</html>

2. $(document).ready()

 The $(document).ready() method allows us to

execute a function when the document is fully

loaded.

3. dblclick()

 The dblclick() method attaches an event handler

function to an HTML element.

 The function is executed when the user double-

clicks on the HTML element:

Eg

$("p").dblclick(function(){

$(this).hide();

});

4. mouseenter()

 The mouseenter() method attaches an event handler function to an
HTML element.

 The function is executed when the mouse pointer enters the HTML
element:

Eg-<html>

<head>

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>

<script>

$(document).ready(function(){

$("#p1").mouseenter(function(){

alert("You entered p1!");

});

});

</script>

</head>

<body>

<p id="p1">Enter this paragraph.</p>

</body>

</html>

5. mouseleave()

 The mouseleave() method attaches an event handler
function to an HTML element.

 The function is executed when the mouse pointer
leaves the HTML element:

Eg-

$("#p1").mouseleave(function(){
alert("Bye! You now leave p1!");

});

6. The mousedown() method attaches an event
handler function to an HTML element.

 The function is executed, when the left, middle or
right mouse button is pressed down, while the mouse
is over the HTML element:

Eg $("#p1").mousedown(function(){
alert("Mouse down over p1!");

});

7. mouseup()

 The mouseup() method attaches an event handler function to
an HTML element.

 The function is executed, when the left, middle or right mouse
button is released, while the mouse is over the HTML element:

 Eg-$("#p1").mouseup(function(){
alert("Mouse up over p1!");

});

8. hover()

 The hover() method takes two functions and is a combination
of the mouseenter() and mouseleave() methods.

 Eg-$("#p1").hover(function(){
alert("You entered p1!");

},
function(){
alert("Bye! You now leave p1!");

});

9. focus()

 The focus() method attaches an event handler function to an
HTML form field.

 The function is executed when the form field gets focus:

Eg

<script>

$(document).ready(function(){

$("input").focus(function(){

$(this).css("background-color", "yellow");

});

$("input").blur(function(){

$(this).css("background-color", "green");

});

});

</script>

</head>

<body>

Name: <input type="text" name="fullname">

Email: <input type="text" name="email">

</body>

JQUERY EFFECTS-HIDE AND

SHOW,FADING,SLIDING,ANIMATION

JQUERY ENABLES US TO ADD EFFECTS ON A WEB

PAGE. JQUERY EFFECTS CAN BE CATEGORIZED

INTO FADING, SLIDING, HIDING/SHOWING AND AN

IMATION EFFECTS.

JQUERY HIDE AND SHOW

 The jQuery hide() method is used to hide the

selected elements.

 Syntax

$(selector).hide(speed,callback);

$(selector).show(speed,callback);

1. The optional speed parameter specifies the

speed of the hiding/showing, and can take the

following values: "slow", "fast", or milliseconds.

2. callback: It is also an optional parameter. It

specifies the function to be called after

completion of hide() or show() effect.

Eg

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.m
in.js"></script>

<script>

$(document).ready(function(){

$("#hide").click(function(){

$("p").hide();

});

$("#show").click(function(){

$("p").show();

});

});

</script>

</head>

<body>

<p>If you click on the "Hide" button, I will disappear.</p>

<button id="hide">Hide</button>

<button id="show">Show</button>

</body>

JQUERY EFFECTS - FADING

 With jQuery you can fade an element in and out of
visibility.

 jQuery has the following fade methods:

1. fadeIn()

2. fadeOut()

3. fadeToggle()

4. fadeTo()

1. jQuery fadeIn() Method

 The jQuery fadeIn() method is used to fade in a
hidden element.

 Syntax:

 $(selector).fadeIn(speed,callback);

Eg

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("#div1").fadeIn();

$("#div2").fadeIn("slow");

$("#div3").fadeIn(3000);

});

});

</script>

</head>

<body>

<p>Demonstrate fadeIn() with different parameters.</p>

<button>Click to fade in boxes</button>

<div id="div1" style="width:80px;height:80px;display:none;background-
color:red;"></div>

<div id="div2" style="width:80px;height:80px;display:none;background-
color:green;"></div>

<div id="div3" style="width:80px;height:80px;display:none;background-
color:blue;"></div>

</body>

3. jQuery fadeToggle() Method

 The jQuery fadeToggle() method toggles between

the fadeIn() and fadeOut() methods.

 If the elements are faded out, fadeToggle() will

fade them in.

 If the elements are faded in, fadeToggle() will

fade them out.

Syntax:

 $(selector).fadeToggle(speed,callback);

Eg-<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>

<script>$(document).ready(function(){

$("button").click(function(){

$("#div1").fadeToggle();

$("#div2").fadeToggle("slow");

$("#div3").fadeToggle(3000);

});

});

</script>

<body>

<p>Demonstrate fadeToggle() with different speed parameters.</p>

<button>Click to fade in/out boxes</button>

<div id="div1" style="width:80px;height:80px;background-
color:red;"></div>

<div id="div2" style="width:80px;height:80px;background-
color:green;"></div>

<div id="div3" style="width:80px;height:80px;background-
color:blue;"></div>

</body>

4. jQuery fadeTo() Method

 The jQuery fadeTo() method allows fading to a

given opacity (value between 0 and 1).

Syntax:

 $(selector).fadeTo(speed,opacity,callback);

The required opacity parameter in

the fadeTo() method specifies fading to a given

opacity (value between 0 and 1).

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("#div1").fadeTo("slow", 0.15);

$("#div2").fadeTo("slow", 0.4);

$("#div3").fadeTo("slow", 0.7);

});

});

</script>

</head>

<body>

<p>Demonstrate fadeTo() with different parameters.</p>

<button>Click to fade boxes</button>

<div id="div1" style="width:80px;height:80px;background-
color:red;"></div>

<div id="div2" style="width:80px;height:80px;background-
color:green;"></div>

<div id="div3" style="width:80px;height:80px;background-
color:blue;"></div>

</body>

2. jQuery fadeOut() Method

 The jQuery fadeOut() method is used to fade out a visible element.

Syntax:

 $(selector).fadeOut(speed,callback);

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("#div1").fadeOut();

$("#div2").fadeOut("slow");

$("#div3").fadeOut(3000);

});

});

</script>

</head>

<body>

<p>Demonstrate fadeOut() with different parameters.</p>

<button>Click to fade out boxes</button>

<div id="div1" style="width:80px;height:80px;background-color:red;"></div>

<div id="div2" style="width:80px;height:80px;background-
color:green;"></div>

<div id="div3" style="width:80px;height:80px;background-color:blue;"></div>

</body>

JQUERY SLIDING

 With jQuery you can create a sliding effect on
elements.

 jQuery has the following slide methods:

1. slideDown()

2. slideUp()

3. slideToggle()

1. jQuery slideDown() Method

 The jQuery slideDown() method is used to slide
down an element.

Syntax:

 $(selector).slideDown(speed,callback);

Eg -<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("#flip").click(function(){

$("#panel").slideDown("slow");

});

});

</script>

<style>

#panel, #flip {

padding: 5px;

text-align: center;

background-color: #e5eecc;

border: solid 1px #c3c3c3;

}

#panel {

padding: 50px;

display: none;

}

</style>

<body>

<div id="flip">Click to slide down panel</div>

<div id="panel">Hello world!</div>

</body>

2. jQuery slideUp() Method

 The jQuery slideUp() method is used to slide up

an element.

Syntax:

 $(selector).slideUp(speed,callback);

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("#flip").click(function(){

$("#panel").slideUp("slow");

});

});

</script>

<style>

#panel, #flip {

padding: 5px;

text-align: center;

background-color: #e5eecc;

border: solid 1px #c3c3c3;

}

#panel {

padding: 50px;

}

</style>

</head>

<body>

<div id="flip">Click to slide up panel</div>

<div id="panel">Hello world!</div>

</body>

3. jQuery slideToggle() Method

 The jQuery slideToggle() method toggles between

the slideDown() and slideUp() methods.

 If the elements have been slid

down, slideToggle() will slide them up.

 If the elements have been slid

up, slideToggle() will slide them down.

syntax

 $(selector).slideToggle(speed,callback);

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("#flip").click(function(){

$("#panel").slideToggle("slow");

});

});

</script>

<style>

#panel, #flip {

padding: 5px;

text-align: center;

background-color: #e5eecc;

border: solid 1px #c3c3c3;

}

#panel {

padding: 50px;

display: none;

}

</style>

<body>

<div id="flip">Click to slide the panel down or up</div>

<div id="panel">Hello world!</div>

</body>

JQUERY ANIMATIONS - THE ANIMATE()

METHOD

 The jQuery animate() method is used to create

custom animations.

 Syntax:

 $(selector).animate({params},speed,callback);

 The required params parameter defines the CSS

properties to be animated.

 The optional speed parameter specifies the

duration of the effect. It can take the following

values: "slow", "fast", or milliseconds.

 The optional callback parameter is a function to

be executed after the animation completes.

Eg-<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquer
y.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("div").animate({left: '250px'});

});

});

</script>

</head>

<body>

<button>Start Animation</button>

<p>By default, all HTML elements have a static position, and
cannot be moved. To manipulate the position, remember to
first set the CSS position property of the element to
relative, fixed, or absolute!</p>

<div
style="background:#98bf21;height:100px;width:100px;posit
ion:absolute;"></div>

</body>

JQUERY CALLBACK FUNCTIONS

 JavaScript statements are executed line by line.

However, with effects, the next line of code can be run

even though the effect is not finished. This can create

errors.

 To prevent this, you can create a callback function.

 A callback function is executed after the current effect

is finished.

 Typical syntax: $(selector).hide(speed,callback);

 Examples

 The example below has a callback parameter that is a

function that will be executed after the hide effect is

completed:

Eg with callback- <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/
jquery.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("p").hide("slow", function(){

alert("The paragraph is now hidden");

});

});

});

</script>

</head>

<body>

<button>Hide</button>

<p>This is a paragraph with little content.</p>

</body>

 The example below has no callback parameter, and the
alert box will be displayed before the hide effect is
completed

 Example without Callback

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquer
y.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("p").hide(1000);

alert("The paragraph is now hidden");

});

});

</script>

</head>

<body>

<button>Hide</button>

<p>This is a paragraph with little content.</p>

</body>

JQUERY CHAINING

 With jQuery, we can chain together actions/methods.

 Until now we have been writing jQuery statements
one at a time (one after the other).

 However, there is a technique called chaining, that
allows us to run multiple jQuery commands, one after
the other, on the same element(s).

 That is Chaining allows us to run multiple jQuery
methods (on the same element) within a single
statement.

 To chain an action, you simply append the action to
the previous action.

 The following example chains together
the css(), slideUp(), and slideDown() methods. The
"p1" element first changes to red, then it slides up,
and then it slides down:

Eg- <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquer
y.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("#p1").css("color", "red").slideUp(2000).slideDown(2000);

});

});

</script>

</head>

<body>

<p id="p1">jQuery is fun!!</p>

<button>Click me</button>

</body>

JQUERY GET AND SET CONTENT AND

ATTRIBUTES

 jQuery contains powerful methods for changing
and manipulating HTML elements and
attributes.

 One very important part of jQuery is the
possibility to manipulate the DOM.

Get Content - text(), html(), and val()

 Three simple, but useful, jQuery methods for
DOM manipulation are:

 text() - Sets or returns the text content of selected
elements

 html() - Sets or returns the content of selected
elements (including HTML markup)

 val() - Sets or returns the value of form fields

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.m
in.js"></script>

<script>

$(document).ready(function(){

$("#btn1").click(function(){

alert("Text: " + $("#test").text());

});

$("#btn2").click(function(){

alert("HTML: " + $("#test").html());

});

});

</script>

</head>

<body>

<p id="test">This is some bold text in a paragraph.</p>

<button id="btn1">Show Text</button>

<button id="btn2">Show HTML</button>

</body>

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquer
y.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

alert("Value: " + $("#test").val());

});

});

</script>

</head>

<body>

<p>Name: <input type="text" id="test" value="Mickey
Mouse"></p>

<button>Show Value</button>

</body>

Get Attributes - attr()

 The jQuery attr() method is used to get attribute values.

 The following example demonstrates how to get the value
of the href attribute in a link:

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquer
y.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

alert($("#w3s").attr("href"));

});

});

</script>

</head>

<body>

<p><a href="https://www.w3schools.com"
id="w3s">W3Schools.com</p>

<button>Show href Value</button>

</body>

Set Content - text(), html(), and val()

 We will use the same three methods from the

previous page to set content:

 text() - Sets or returns the text content of selected

elements

 html() - Sets or returns the content of selected

elements (including HTML markup)

 val() - Sets or returns the value of form fields

 The following example demonstrates how to set

content with the jQuery text(), html(),

and val() methods:

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>

<script>$(document).ready(function(){

$("#btn1").click(function(){

$("#test1").text("Hello world!");

});

$("#btn2").click(function(){

$("#test2").html("Hello world!");

});

$("#btn3").click(function(){

$("#test3").val("Dolly Duck");

});

});</script>

<body>

<p id="test1">This is a paragraph.</p>

<p id="test2">This is another paragraph.</p>

<p>Input field: <input type="text" id="test3" value="Mickey
Mouse"></p>

<button id="btn1">Set Text</button>

<button id="btn2">Set HTML</button>

<button id="btn3">Set Value</button>

</body>

Set Attributes - attr()

 The jQuery attr() method is also used to set/change attribute values.

 The following example demonstrates how to change (set) the value of
the href attribute in a link:

Eg

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("#w3s").attr("href", "https://www.w3schools.com/jquery/");

});

});

</script>

</head>

<body>

<p><a href="https://www.w3schools.com"
id="w3s">W3Schools.com</p>

<button>Change href Value</button>

<p>Mouse over the link (or click on it) to see that the value of the href
attribute has changed.</p>

</body>

JQUERY –ADD ELEMENTS

 With jQuery, it is easy to add new

elements/content.

 There are four jQuery methods that are used to

add new content:

1. append() - Inserts content at the end of the

selected elements

2. prepend() - Inserts content at the beginning of

the selected elements

3. after() - Inserts content after the selected

elements

4. before() - Inserts content before the selected

elements

1. jQuery append() Method

 The jQuery append() method inserts content AT THE END of the selected HTML
elements.

Eg -<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></scrip
t>

<script>$(document).ready(function(){

$("#btn1").click(function(){

$("p").append(" Appended text.");

});

$("#btn2").click(function(){

$("ol").append("Appended item");

});

});</script>

<body>

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

List item 1

List item 2

List item 3

<button id="btn1">Append text</button>

<button id="btn2">Append list items</button>

</body>

2. jQuery prepend() Method

 The jQuery prepend() method inserts content AT THE BEGINNING of the
selected HTML elements.

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></s
cript>

<script>$(document).ready(function(){

$("#btn1").click(function(){

$("p").prepend("Prepended text. ");

});

$("#btn2").click(function(){

$("ol").prepend("Prepended item");

});

});</script>

<body>

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

List item 1

List item 2

List item 3

<button id="btn1">Prepend text</button>

<button id="btn2">Prepend list item</button>

</body>

3. jQuery after() and before() Methods

 The jQuery after() method inserts content AFTER the selected HTML
elements.

 The jQuery before() method inserts content BEFORE the selected HTML
elements.

Eg-<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></s
cript>

<script>

$(document).ready(function(){

$("#btn1").click(function(){

$("img").before("Before");

});

$("#btn2").click(function(){

$("img").after("<i>After</i>");

});

});

</script>

<body>

<img src="/images/w3jquery.gif" alt="jQuery" width="100"
height="140">

<button id="btn1">Insert before</button>

<button id="btn2">Insert after</button>

</body>

ADD SEVERAL NEW ELEMENTS

1. Add Several New Elements With append()

and prepend()

 However, both append() and prepend() methods

can take an infinite number of new elements as

parameters. The new elements can be generated

with text/HTML ,with jQuery, or with JavaScript

code and DOM elements.

Eg-<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/
jquery.min.js"></script>

<script>

function appendText() {

var txt1 = "<p>Text.</p>"; // Create text with HTML

var txt2 = $("<p></p>").text("Text."); // Create text with
jQuery

var txt3 = document.createElement("p");

txt3.innerHTML = "Text."; // Create text with DOM

$("body").append(txt1, txt2, txt3); // Append new
elements

}

</script>

</head>

<body>

<p>This is a paragraph.</p>

<button onclick="appendText()">Append text</button>

</body>

2. Add Several New Elements With after() and

before()

 Also, both the after() and before() methods can

take an infinite number of new elements as

parameters. The new elements can be generated

with text/HTML, with jQuery, or with JavaScript

code and DOM elements.

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.m
in.js"></script>

<script>

function afterText() {

var txt1 = "I "; // Create element with HTML

var txt2 = $("<i></i>").text("love "); // Create with jQuery

var txt3 = document.createElement("b"); // Create with DOM

txt3.innerHTML = "jQuery!";

$("img").after(txt1, txt2, txt3); // Insert new elements after
img

}

</script>

</head>

<body>

<img src="/images/w3jquery.gif" alt="jQuery" width="100"
height="140">

<p>Click the button to insert text after the image.</p>

<button onclick="afterText()">Insert after</button>

</body>

JQUERY REMOVE ELEMENTS

 With jQuery, it is easy to remove existing HTML

elements.

 To remove elements and content, there are

mainly two jQuery methods:

 remove() - Removes the selected element (and its

child elements)

 empty() - Removes the child elements from the

selected element

 jQuery remove() Method

 The jQuery remove() method removes the

selected element(s) and its child elements.

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.m
in.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("#div1").remove();

});

});

</script>

<body>

<div id="div1" style="height:100px;width:300px;border:1px solid
black;background-color:yellow;">

This is some text in the div.

<p>This is a paragraph in the div.</p>

<p>This is another paragraph in the div.</p>

</div>

<button>Remove div element</button>

</body>

 jQuery empty() Method

 The jQuery empty() method removes the child elements of the selected
element(s).

Eg-<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("#div1").empty();

});

});

</script>

</head>

<body>

<div id="div1" style="height:100px;width:300px;border:1px solid
black;background-color:yellow;">

This is some text in the div.

<p>This is a paragraph in the div.</p>

<p>This is another paragraph in the div.</p>

</div>

<button>Empty the div element</button>

</body>

JQUERY GET AND SET CSS CLASSES

 With jQuery, it is easy to manipulate the style of

elements.

 jQuery has several methods for CSS

manipulation. We will look at the following

methods:

 addClass() - Adds one or more classes to the

selected elements

 removeClass() - Removes one or more classes

from the selected elements

 toggleClass() - Toggles between adding/removing

classes from the selected elements

 css() - Sets or returns the style attribute

jQuery addClass() Method

The following example shows how to add class

attributes to different elements. Of course you

can select multiple elements, when adding

classes:

Eg-<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("h1, h2, p").addClass("blue");

$("div").addClass("important");

});

});

</script>

<style>

.important {

font-weight: bold;

font-size: xx-large;

}

.blue {

color: blue;

}

</style>

<body>

<h1>Heading 1</h1>

<h2>Heading 2</h2>

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

<div>This is some important text!</div>

<button>Add classes to elements</button>

</body>

jQuery removeClass() Method

 The following example shows how to remove a specific class attribute from different
elements:

Eg <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("h1, h2, p").removeClass("blue");

});

});

</script>

<style>

.important {

font-weight: bold;

font-size: xx-large;

}

.blue {

color: blue;

}

</style>

<body>

<h1 class="blue">Heading 1</h1>

<h2 class="blue">Heading 2</h2>

<p class="blue">This is a paragraph.</p>

<p>This is another paragraph.</p>

<button>Remove class from elements</button>

</body>

jQuery toggleClass() Method

 The following example will show how to use the

jQuery toggleClass() method. This method

toggles between adding/removing classes from

the selected elements:

Eg- <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("h1, h2, p").toggleClass("blue");

});

});

</script>

<style>

.blue {

color: blue;

}

</style>

<body>

<h1>Heading 1</h1>

<h2>Heading 2</h2>

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

<button>Toggle class</button>

</body>

JQUERY CSS() METHOD

jQuery css() Method

 The css() method sets or returns one or more

style properties for the selected elements.

 Return a CSS Property

 To return the value of a specified CSS property,

use the following syntax:

 css("propertyname");

Eg. <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.
min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

alert("Background color = " + $("p").css("background-
color"));

});

});

</script>

<body>

<h2>This is a heading</h2>

<p style="background-color:#ff0000">This is a paragraph.</p>

<p style="background-color:#00ff00">This is a paragraph.</p>

<p style="background-color:#0000ff">This is a paragraph.</p>

<button>Return background-color of p</button>

</body>

Set a CSS Property

 To set a specified CSS property, use the following syntax:

 css("propertyname","value");

Eg <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("p").css("background-color", "yellow");

});

});

</script>

<body>

<h2>This is a heading</h2>

<p style="background-color:#ff0000">This is a paragraph.</p>

<p style="background-color:#00ff00">This is a paragraph.</p>

<p style="background-color:#0000ff">This is a paragraph.</p>

<p>This is a paragraph.</p>

<button>Set background-color of p</button>

</body>

Set Multiple CSS Properties

 To set multiple CSS properties, use the following

syntax:

 css({"propertyname":"value","propertyname":"valu

e",...});

Eg

 $("p").css({"background-color": "yellow", "font-

size": "200%"});

JQUERY NOCONFLICT() METHOD

 jQuery uses the $ sign as a shortcut for jQuery.

 There are many other popular JavaScript

frameworks like: Angular, Backbone, Ember,

Knockout, and more.

 If two different frameworks are using the same

shortcut, one of them might stop working.

 The jQuery team have already thought about

this, and implemented the noConflict() method.

 The noConflict() method releases the hold on the

$ shortcut identifier, so that other scripts can use

it.

Eg

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquer
y.min.js"></script>

<script>

$.noConflict();

jQuery(document).ready(function(){

jQuery("button").click(function(){

jQuery("p").text("jQuery is still working!");

});

});

</script>

</head>

<body>

<p>This is a paragraph.</p>

<button>Test jQuery</button>

</body>

REFERENCES

https://www.tutorialspoint.com/jquery

https://www.w3schools.com/jquery/

https://www.javatpoint.com/jquery-tutorial

https://www.tutorialspoint.com/jquery
https://www.w3schools.com/jquery/
https://www.javatpoint.com/jquery-tutorial

Thank You !!!

Any Queries

7721082286/shrushti.rapelli@gmail.com

@ Mrs Shrushti N. Rapelli 774/15/2023

Logic Gates

By
Mrs. Deshpande M.K.

Digital Electronics

Logic Gates
• The logic gates are the basic building blocks of digital electronics.

• Logic gate is a digital circuit follows a logical relationship between the input and output.

• Logic gates are the switches that turn ON or OFF depending on what the user is doing

• Logic gates turn ON when a certain condition is true, and OFF when the condition is false

Basic Gates
All digital systems can be constructed by only three basic logic gates. These

basic gates are called the AND gate, the OR gate, and the NOT gate.

Derived Gates
The logic gates which are derived from the basic gates such as AND, OR, NOT gates are

called derived gates. These derived gates have their own unique Symbols, Truth Tables and

Boolean Expressions. Here we will explore the most common derived gates such as NAND

Gate, NOR Gate, EX-OR Gate, and EX-NOR Gate.

Derived Gates with Truth Table

NAND

NORXOR

XNOR

Thank you.

Faculty-Nilima Mondhe
Class-BCA I
Sem-II
Subject-Advance web Programming

What is JavaScript

JavaScript (js) is a light-weight object-oriented programming language which is used by

several websites for scripting the webpages. It is an interpreted, full-fledged

programming language that enables dynamic interactivity on websites when applied to

an HTML document.

 It was introduced in the year 1995 for adding programs to the webpages in the

Netscape Navigator browser. Since then, it has been adopted by all other graphical web

browsers. With JavaScript, users can build modern web applications to interact directly

without reloading the page every time. The traditional website uses js to provide several

forms of interactivity and simplicity.
6.7M

222Although, JavaScript has no connectivity with Java programming language. The name

was suggested and provided in the times when Java was gaining popularity in the

market. In addition to web browsers, databases such as CouchDB and MongoDB uses

JavaScript as their scripting and query language.

Features of JavaScript

There are following features of JavaScript:

1. All popular web browsers support JavaScript as they provide built-in execution

environments.

2. JavaScript follows the syntax and structure of the C programming language. Thus,

it is a structured programming language.

3. JavaScript is a weakly typed language, where certain types are implicitly cast

(depending on the operation).

4. JavaScript is an object-oriented programming language that uses prototypes

rather than using classes for inheritance.

5. It is a light-weighted and interpreted language.

6. It is a case-sensitive language.

7. JavaScript is supportable in several operating systems including, Windows,

macOS, etc.

8. It provides good control to the users over the web browsers.

History of JavaScript

In 1993, Mosaic, the first popular web browser, came into existence. In the year

1994, Netscape was founded by Marc Andreessen. He realized that the web needed to

become more dynamic. Thus, a 'glue language' was believed to be provided to HTML to

make web designing easy for designers and part-time programmers. Consequently, in

1995, the company recruited Brendan Eich intending to implement and embed Scheme

programming language to the browser. But, before Brendan could start, the company

merged with Sun Microsystems for adding Java into its Navigator so that it could

compete with Microsoft over the web technologies and platforms. Now, two languages

were there: Java and the scripting language. Further, Netscape decided to give a similar

name to the scripting language as Java's. It led to 'Javascript'. Finally, in May 1995, Marc

Andreessen coined the first code of Javascript named 'Mocha'. Later, the marketing

team replaced the name with 'LiveScript'. But, due to trademark reasons and certain

other reasons, in December 1995, the language was finally renamed to 'JavaScript'. From

then, JavaScript came into existence.

Application of JavaScript

JavaScript is used to create interactive websites. It is mainly used for:

o Client-side validation,

o Dynamic drop-down menus,

o Displaying date and time,

o Displaying pop-up windows and dialog boxes (like an alert dialog box, confirm

dialog box and prompt dialog box),

o Displaying clocks etc.

JavaScript Example

￼

￼

1. <script>  

2. document.write("Hello JavaScript by JavaScript");  

3. </script>  
Test it Now

A detailed explanation of first JavaScript example is given in next chapter.

1. script type="text/javascript">  

2. document.write("JavaScript is a simple language for javatpoint learners");  

3. </script>  

Test it Now

The script tag specifies that we are using JavaScript.

The text/javascript is the content type that provides information to the browser about

the data.
45.2M

996

OOPs Concepts in Java

https://www.javatpoint.com/oprweb/test.jsp?filename=hellojs%22%20/t%20%22_blank
https://www.javatpoint.com/oprweb/test.jsp?filename=example1js

Next
Stay

The document.write() function is used to display dynamic content through JavaScript.

We will learn about document object in detail later.

3 Places to put JavaScript code

1. Between the body tag of html

2. Between the head tag of html

3. In .js file (external javaScript)

1) JavaScript Example : code between the body tag

In the above example, we have displayed the dynamic content using JavaScript. Let’s see

the simple example of JavaScript that displays alert dialog box.

1. <script type="text/javascript">  

2.  alert("Hello Javatpoint");  

3. </script>  

Test it Now

2) JavaScript Example : code between the head tag

Let’s see the same example of displaying alert dialog box of JavaScript that is contained

inside the head tag.

In this example, we are creating a function msg(). To create function in JavaScript, you

need to write function with function_name as given below.

To call function, you need to work on event. Here we are using onclick event to call

msg() function.

1. <html>  

2. <head>  

3. <script type="text/javascript">  

4. function msg(){  

5.  alert("Hello Javatpoint");  

6. }  

7. </script>  

8. </head>  

9. <body>  

10. <p>Welcome to JavaScript</p>  

11. <form>  

12. <input type="button" value="click" onclick="msg()"/>  

https://www.javatpoint.com/oprweb/test.jsp?filename=example2js

13. </form>  

14. </body>  

15. </html>  

JavaScript Comment

The JavaScript comments are meaningful way to deliver message. It is used to add

information about the code, warnings or suggestions so that end user can easily interpret the

code.

The JavaScript comment is ignored by the JavaScript engine i.e. embedded in the browser.

Advantages of JavaScript comments
There are mainly two advantages of JavaScript comments.

JavaScript Variable

1. JavaScript variable

2. JavaScript Local variable

3. JavaScript Global variable

A JavaScript variable is simply a name of storage location. There are two types of

variables in JavaScript : local variable and global variable.

There are some rules while declaring a JavaScript variable (also known as identifiers).

1. Name must start with a letter (a to z or A to Z), underscore(_), or dollar($) sign.

2. After first letter we can use digits (0 to 9), for example value1.

3. JavaScript variables are case sensitive, for example x and X are different variables.

Correct JavaScript variables

1. var x = 10;  

2. var _value="sonoo";  

Incorrect JavaScript variables

1. var  123=30;  

2. var *aa=320;  

Example of JavaScript variable

Let’s see a simple example of JavaScript variable.
Competitive questions on Structures in HindiKeep Watching

1. <script>  

2. var x = 10;  

3. var y = 20;  

4. var z=x+y;  

5. document.write(z);  

https://www.javatpoint.com/javascript-variable
https://www.javatpoint.com/javascript-variable#local
https://www.javatpoint.com/javascript-variable#gloabl

6. </script>  

Test it Now

Output of the above example
30

JavaScript local variable

A JavaScript local variable is declared inside block or function. It is accessible within the

function or block only. For example:

1. <script>  

2. function abc(){  

3. var x=10;//local variable  

4. }  

5. </script>  

Or,

1. <script>  

2. If(10<13){  

3. var y=20;//JavaScript local variable  

4. }  

5. </script>  

JavaScript global variable

A JavaScript global variable is accessible from any function. A variable i.e. declared

outside the function or declared with window object is known as global variable. For

example:

1. <script>  

2. var data=200;//gloabal variable  

3. function a(){  

4. document.writeln(data);  

5. }  

6. function b(){  

7. document.writeln(data);  

8. }  

9. a();//calling JavaScript function  

10. b();  

11. </script>  

Javascript Data Types

JavaScript provides different data types to hold different types of values. There are two

types of data types in JavaScript.

https://www.javatpoint.com/oprweb/test.jsp?filename=jsvariable1

1. Primitive data type

2. Non-primitive (reference) data type

JavaScript is a dynamic type language, means you don't need to specify type of the

variable because it is dynamically used by JavaScript engine. You need to use var here to

specify the data type. It can hold any type of values such as numbers, strings etc. For

example:

1. var a=40;//holding number  

2. var b="Rahul";//holding string  

3.

JavaScript primitive data types

There are five types of primitive data types in JavaScript. They are as follows:

Data Type Description
String represents sequence of characters e.g. "hello"

Number represents numeric values e.g. 100

Boolean represents boolean value either false or true

Undefined represents undefined value

Null represents null i.e. no value at all

JavaScript non-primitive data types

The non-primitive data types are as follows:

Data Type Description

Object represents instance through which we can access members

Array represents group of similar values

RegExp represents regular expression

We will have great discussion on each data type later.

JavaScript If-else

The JavaScript if-else statement is used to execute the code whether condition is true or

false. There are three forms of if statement in JavaScript.

1. If Statement

2. If else statement

3. if else if statement

JavaScript If statement

It evaluates the content only if expression is true. The signature of JavaScript if

statement is given below.

1. if(expression){  

2. //content to be evaluated  

3. }  

Flowchart of JavaScript If statement

Let’s see the simple example of if statement in javascript.

1. <script>  

2. var a=20;  

3. if(a>10){  

4. document.write("value of a is greater than 10");  

5. }  

6. </script>  

JavaScript Loops

The JavaScript loops are used to iterate the piece of code using for, while, do while or for-in

loops. It makes the code compact. It is mostly used in array.

There are four types of loops in JavaScript.
1. for loop
2. while loop
3. do-while loop
4. for-in loop

1) JavaScript For loop

The JavaScript for loop iterates the elements for the fixed number of times. It should be used if

number of iteration is known. The syntax of for loop is given below.
1. for (initialization; condition; increment)  
2. {  
3.     code to be executed  
4. }  

Let’s see the simple example of for loop in javascript.
4.4M

Epic Games Is Acquiring Bandcamp

1. <script>  
2. for (i=1; i<=5; i++)  
3. {  
4. document.write(i + "
")  
5. }  
6. </script>  

Test it Now

Output:
1
2
3
4
5

https://www.javatpoint.com/oprweb/test.jsp?filename=jsloop1

2) JavaScript while loop

The JavaScript while loop iterates the elements for the infinite number of times.

It should be used if number of iteration is not known. The syntax of while loop is

given below.
1. while (condition)  
2. {  
3.     code to be executed  
4. }  

Let’s see the simple example of while loop in javascript.
1. <script>  
2. var i=11;  
3. while (i<=15)  
4. {  
5. document.write(i + "
");  
6. i++;  
7. }  
8. </script>  

Test it Now

Output:
11
12
13
14
15

3) JavaScript do while loop

The JavaScript do while loop iterates the elements for the infinite number of

times like while loop. But, code is executed at least once whether condition is true

or false. The syntax of do while loop is given below.
1. do{  
2.     code to be executed  
3. }while (condition);  

Let’s see the simple example of do while loop in javascript.
1. <script>  
2. var i=21;  
3. do{  
4. document.write(i + "
");  
5. i++;  
6. }while (i<=25);  
7. </script>  

Test it Now

Output:

https://www.javatpoint.com/oprweb/test.jsp?filename=jsloop2%22%20/t%20%22_blank
https://www.javatpoint.com/oprweb/test.jsp?filename=jsloop3%22%20/t%20%22_blank

21
22
23
24
25

4) JavaScript for in loop

The JavaScript for in loop is used to iterate the properties of an object. We will discuss

about it later.

JavaScript Switch

The JavaScript switch statement is used to execute one code from multiple expressions.

It is just like else if statement that we have learned in previous page. But it is convenient

than if..else..if because it can be used with numbers, characters etc.

The signature of JavaScript switch statement is given below.

1. switch(expression){  

2. case value1:  

3.  code to be executed;  

4.  break;  

5. case value2:  

6.  code to be executed;  

7.  break;  

8.  

9.   

10. default:   

11.  code to be executed if above values are not matched;  

12. }  

Let’s see the simple example of switch statement in javascript.

1. <script>  

2. var grade='B';  

3. var result;  

4. switch(grade){  

5. case 'A':  

6. result="A Grade";  

7. break;  

8. case 'B':  

9. result="B Grade";  

10. break;  

11. case 'C':  

12. result="C Grade";  

13. break;  

14. default:  

15. result="No Grade";  

16. }  

17. document.write(result);  

18. </script>  

Test it Now

Output of the above example
B Grade

The switch statement is fall-through i.e. all the cases will be evaluated if you don't use break
statement.

Let’s understand the behaviour of switch statement in JavaScript.
1

1. <script>  

2. var grade='B';  

3. var result;  

4. switch(grade){  

5. case 'A':  

6. result+=" A Grade";  

7. case 'B':  

8. result+=" B Grade";  

9. case 'C':  

10. result+=" C Grade";  

11. default:  

12. result+=" No Grade";  

13. }  

14. document.write(result);  

15. </script>  

JavaScript functions are used to perform operations. We can call JavaScript function

many times to reuse the code.

Advantage of JavaScript function
There are mainly two advantages of JavaScript functions.

1. Code reusability: We can call a function several times so it save coding.

2. Less coding: It makes our program compact. We don’t need to write many lines of code

each time to perform a common task.

JavaScript Function Syntax

The syntax of declaring function is given below.

1. function functionName([arg1, arg2, ...argN]){  

2.  //code to be executed  

3. }  

JavaScript Functions can have 0 or more arguments.
18.8M

281

Triggers in SQL (Hindi)

https://www.javatpoint.com/oprweb/test.jsp?filename=jsswitch

JavaScript Function Example

Let’s see the simple example of function in JavaScript that does not has arguments.

1. <script>  

2. function msg(){  

3. alert("hello! this is message");  

4. }  

5. </script>  

6. <input type="button" onclick="msg()" value="call function"/>  

Test it Now

Output of the above example

JavaScript Function Arguments

We can call function by passing arguments. Let’s see the example of function that has

one argument.

1. <script>  

2. function getcube(number){  

3. alert(number*number*number);  

4. }  

5. </script>  

6. <form>  

7. <input type="button" value="click" onclick="getcube(4)"/>  

8. </form>  

Test it Now

Output of the above example
Top of Form

Bottom of Form

Function with Return Value

We can call function that returns a value and use it in our program. Let’s see the

example of function that returns value.

1. <script>  

2. function getInfo(){  

3. return "hello javatpoint! How r u?";  

4. }  

5. </script>  

6. <script>  

7. document.write(getInfo());  

8. </script> 

JavaScript Events

The change in the state of an object is known as an Event. In html, there are various

events which represents that some activity is performed by the user or by the browser.

When javascript code is included in HTML, js react over these events and allow the

https://www.javatpoint.com/oprweb/test.jsp?filename=function1js
https://www.javatpoint.com/oprweb/test.jsp?filename=function2js%22%20/t%20%22_blank
https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/html-tutorial

execution. This process of reacting over the events is called Event Handling. Thus, js

handles the HTML events via Event Handlers.

For example, when a user clicks over the browser, add js code, which will execute the

task to be performed on the event.

Some of the HTML events and their event handlers are:

Mouse events:

Event Performed Event Handler Description
click onclick When mouse click on an element

mouseover onmouseover When the cursor of the mouse comes over the

element

mouseout onmouseout When the cursor of the mouse leaves an

element

mousedown onmousedown When the mouse button is pressed over the

element

mouseup onmouseup When the mouse button is released over the

element

mousemove onmousemove When the mouse movement takes place.

Keyboard events:
Event Performed Event Handler Description
Keydown & Keyup onkeydown &

onkeyup

When the user press and then release

the key

Form events:
Event Performed Event Handler Description

focus onfocus When the user focuses on an element

submit onsubmit When the user submits the form

blur onblur When the focus is away from a form element

change onchange When the user modifies or changes the value of

a form element

Window/Document events
Event Performed Event Handler Description

load onload When the browser finishes the loading of the

page

unload onunload When the visitor leaves the current webpage, the

browser unloads it

resize onresize When the visitor resizes the window of the

browser

Let's discuss some examples over events and their handlers.
45.7M

915

C++ vs Java

Click Event
1. <html>  

2. <head> Javascript Events </head>  

3. <body>  

4. <script language="Javascript" type="text/Javascript">  

5.     <!--  

6.     function clickevent()  

7.     {  

8.         document.write("This is JavaTpoint");  

9.     }  

10.     //-->  

11. </script>  

12. <form>  

13. <input type="button" onclick="clickevent()" value="Who's this?"/>  

14. </form>  

15. </body>  

16. </html>  

Test it Now

MouseOver Event
1. <html>  

2. <head>   

3. <h1> Javascript Events </h1>  

4. </head>  

5. <body>  

6. <script language="Javascript" type="text/Javascript">  

7.     <!--  

8.     function mouseoverevent()  

9.     {  

10.         alert("This is JavaTpoint");  

11.     }  

12.     //-->  

13. </script>  

14. <p onmouseover="mouseoverevent()"> Keep cursor over me</p>  

15. </body>  

16. </html>  

Test it Now

Focus Event
1. <html>  

2. <head> Javascript Events</head>  

3. <body>  

4. <h2> Enter something here</h2>  

5. <input type="text" id="input1" onfocus="focusevent()"/>  

6. <script>  

https://www.javatpoint.com/oprweb/test.jsp?filename=JavaScriptClickEvent
https://www.javatpoint.com/oprweb/test.jsp?filename=JavaScriptMouseOverEvent

7. <!--  

8.     function focusevent()  

9.     {  

10.         document.getElementById("input1").style.background=" aqua";  

11.     }  

12. //-->  

13. </script>  

14. </body>  

15. </html>  

Test it Now

Keydown Event
1. <html>  

2. <head> Javascript Events</head>  

3. <body>  

4. <h2> Enter something here</h2>  

5. <input type="text" id="input1" onkeydown="keydownevent()"/>  

6. <script>  

7. <!--  

8.     function keydownevent()  

9.     {  

10.         document.getElementById("input1");  

11.         alert("Pressed a key");  

12.     }  

13. //-->  

14. </script>  

15. </body>  

16. </html>  

Test it Now

Load event
1. <html>  

2. <head>Javascript Events</head>  

3. </br>  

<body onload="window.alertJavaScript Array

JavaScript array is an object that represents a collection of similar type of elements.

There are 3 ways to construct array in JavaScript

1. By array literal

2. By creating instance of Array directly (using new keyword)

3. By using an Array constructor (using new keyword)

1) JavaScript array literal

The syntax of creating array using array literal is given below:

1. var arrayname=[value1,value2.....valueN];  

https://www.javatpoint.com/oprweb/test.jsp?filename=JavaScriptFocusEvent
https://www.javatpoint.com/oprweb/test.jsp?filename=JavaScriptKeydownEvent

As you can see, values are contained inside [] and separated by , (comma).

Let's see the simple example of creating and using array in JavaScript.

1. <script>  

2. var emp=["Sonoo","Vimal","Ratan"];  

3. for (i=0;i<emp.length;i++){  

4. document.write(emp[i] + "
");  

5. }  

6. </script>  

Test it Now

The .length property returns the length of an array.

Output of the above example
Sonoo

Vimal

Ratan

2) JavaScript Array directly (new keyword)

The syntax of creating array directly is given below:

1. var arrayname=new Array();  

Here, new keyword is used to create instance of array.

Let's see the example of creating array directly.

1. <script>  

2. var i;  

3. var emp = new Array();  

4. emp[0] = "Arun";  

5. emp[1] = "Varun";  

6. emp[2] = "John";  

7.   

8. for (i=0;i<emp.length;i++){  

9. document.write(emp[i] + "
");  

10. }  

11. </script>  

Test it Now

Output of the above example
Arun

Varun

John

3) JavaScript array constructor (new keyword)

Here, you need to create instance of array by passing arguments in constructor so that

we don't have to provide value explicitly.

The example of creating object by array constructor is given below.

1. <script>  

2. var emp=new Array("Jai","Vijay","Smith");  

3. for (i=0;i<emp.length;i++){  

4. document.write(emp[i] + "
");  

https://www.javatpoint.com/oprweb/test.jsp?filename=array1js
https://www.javatpoint.com/oprweb/test.jsp?filename=array2js

5. }  

6. </script>  

Test it Now

Output of the above example
Jai

Vijay

Smith

JavaScript Array Methods

Let's see the list of JavaScript array methods with their description.

Methods Description

concat() It returns a new array object that contains two or more merged

arrays.

copywithin() It copies the part of the given array with its own elements and

returns the modified array.

entries() It creates an iterator object and a loop that iterates over each

key/value pair.

every() It determines whether all the elements of an array are satisfying

the provided function conditions.

flat() It creates a new array carrying sub-array elements

concatenated recursively till the specified depth.

flatMap() It maps all array elements via mapping function, then flattens

the result into a new array.

fill() It fills elements into an array with static values.

from() It creates a new array carrying the exact copy of another array

element.

filter() It returns the new array containing the elements that pass the

provided function conditions.

find() It returns the value of the first element in the given array that

satisfies the specified condition.

findIndex() It returns the index value of the first element in the given array

that satisfies the specified condition.

forEach() It invokes the provided function once for each element of an

array.

includes() It checks whether the given array contains the specified

element.

indexOf() It searches the specified element in the given array and returns

the index of the first match.

isArray() It tests if the passed value ia an array.

join() It joins the elements of an array as a string.

keys() It creates an iterator object that contains only the keys of the

array, then loops through these keys.

https://www.javatpoint.com/oprweb/test.jsp?filename=array3js
https://www.javatpoint.com/javascript-array-concat-method
https://www.javatpoint.com/javascript-array-copywithin-method
https://www.javatpoint.com/javascript-array-entries-method
https://www.javatpoint.com/javascript-array-every-method
https://www.javatpoint.com/javascript-array-flat-method
https://www.javatpoint.com/javascript-array-flatmap-method
https://www.javatpoint.com/javascript-array-fill-method
https://www.javatpoint.com/javascript-array-from-method
https://www.javatpoint.com/javascript-array-filter-method
https://www.javatpoint.com/javascript-array-find-method
https://www.javatpoint.com/javascript-array-findindex-method
https://www.javatpoint.com/javascript-array-foreach-method
https://www.javatpoint.com/javascript-array-includes-method
https://www.javatpoint.com/javascript-array-indexof-method
https://www.javatpoint.com/javascript-array-isarray-method
https://www.javatpoint.com/javascript-array-join-method
https://www.javatpoint.com/javascript-array-keys-method

lastIndexOf() It searches the specified element in the given array and returns

the index of the last match.

map() It calls the specified function for every array element and

returns the new array

of() It creates a new array from a variable number of arguments,

holding any type of argument.

pop() It removes and returns the last element of an array.

push() It adds one or more elements to the end of an array.

reverse() It reverses the elements of given array.

reduce(function,

initial)

It executes a provided function for each value from left to right

and reduces the array to a single value.

reduceRight() It executes a provided function for each value from right to left

and reduces the array to a single value.

some() It determines if any element of the array passes the test of the

implemented function.

shift() It removes and returns the first element of an array.

slice() It returns a new array containing the copy of the part of the

given array.

sort() It returns the element of the given array in a sorted order.

splice() It add/remove elements to/from the given array.

toLocaleString() It returns a string containing all the elements of a specified

array.

toString() It converts the elements of a specified array into string form,

without affecting the original array.

unshift() It adds one or more elements in the beginning of the given

array.

values() It creates a new iterator object carrying values for each index in

the array.

4. ('Page successfully loaded');">  

5. <script>  

6. <!--  

7. document.write("The page is loaded successfully");  

8. //-->  

9. </script>  

10. </body>  

11. </html>  

 

JavaScript String

The JavaScript string is an object that represents a sequence of characters.

There are 2 ways to create string in JavaScript

1. By string literal

https://www.javatpoint.com/javascript-array-lastindexof-method
https://www.javatpoint.com/javascript-array-map-method
https://www.javatpoint.com/javascript-array-of-method
https://www.javatpoint.com/javascript-array-pop-method
https://www.javatpoint.com/javascript-array-push-method
https://www.javatpoint.com/javascript-array-reverse-method
https://www.javatpoint.com/javascript-array-reduce-method
https://www.javatpoint.com/javascript-array-reduce-method
https://www.javatpoint.com/javascript-array-reduceright-method
https://www.javatpoint.com/javascript-array-some-method
https://www.javatpoint.com/javascript-array-shift-method
https://www.javatpoint.com/javascript-array-slice-method
https://www.javatpoint.com/javascript-array-sort-method
https://www.javatpoint.com/javascript-array-splice-method
https://www.javatpoint.com/javascript-array-tolocalestring-method
https://www.javatpoint.com/javascript-array-tostring-method
https://www.javatpoint.com/javascript-array-unshift-method
https://www.javatpoint.com/javascript-array-values-method

2. By string object (using new keyword)

1) By string literal
The string literal is created using double quotes. The syntax of creating string using

string literal is given below:

1. var stringname="string value";  

Let's see the simple example of creating string literal.
Competitive questions on Structures in HindiKeep Watching

1. <script>  

2. var str="This is string literal";  

3. document.write(str);  

4. </script>  

Test it Now

Output:
This is string literal

2) By string object (using new keyword)
The syntax of creating string object using new keyword is given below:

1. var stringname=new String("string literal");  

Here, new keyword is used to create instance of string.

Let's see the example of creating string in JavaScript by new keyword.

1. <script>  

2. var stringname=new String("hello javascript string");  

3. document.write(stringname);  

4. </script>  

Test it Now

Output:
hello javascript string

JavaScript String Methods

Let's see the list of JavaScript string methods with examples.

Methods Description

charAt() It provides the char value present at the specified index.

charCodeAt() It provides the Unicode value of a character present at the

specified index.

concat() It provides a combination of two or more strings.

indexOf() It provides the position of a char value present in the given

string.

lastIndexOf() It provides the position of a char value present in the given

string by searching a character from the last position.

https://www.javatpoint.com/oprweb/test.jsp?filename=jsstring1
https://www.javatpoint.com/oprweb/test.jsp?filename=jsstring2
https://www.javatpoint.com/javascript-string-charat-method
https://www.javatpoint.com/javascript-string-charcodeat-method
https://www.javatpoint.com/javascript-string-concat-method
https://www.javatpoint.com/javascript-string-indexof-method
https://www.javatpoint.com/javascript-string-lastindexof-method

search() It searches a specified regular expression in a given string and

returns its position if a match occurs.

match() It searches a specified regular expression in a given string and

returns that regular expression if a match occurs.

replace() It replaces a given string with the specified replacement.

substr() It is used to fetch the part of the given string on the basis of

the specified starting position and length.

substring() It is used to fetch the part of the given string on the basis of

the specified index.

slice() It is used to fetch the part of the given string. It allows us to

assign positive as well negative index.

toLowerCase() It converts the given string into lowercase letter.

toLocaleLowerCase() It converts the given string into lowercase letter on the basis

of host?s current locale.

toUpperCase() It converts the given string into uppercase letter.

toLocaleUpperCase() It converts the given string into uppercase letter on the basis

of host?s current locale.

toString() It provides a string representing the particular object.

valueOf() It provides the primitive value of string object.

split() It splits a string into substring array, then returns that newly

created array.

trim() It trims the white space from the left and right side of the

string.

1) JavaScript String charAt(index) Method
The JavaScript String charAt() method returns the character at the given index.

1. <script>  

2. var str="javascript";  

3. document.write(str.charAt(2));  

4. </script>  

Test it Now

Output:
v

2) JavaScript String concat(str) Method
The JavaScript String concat(str) method concatenates or joins two strings.

1. <script>  

2. var s1="javascript ";  

3. var s2="concat example";  

4. var s3=s1.concat(s2);  

5. document.write(s3);  

6. </script>  

https://www.javatpoint.com/javascript-string-search-method
https://www.javatpoint.com/javascript-string-match-method
https://www.javatpoint.com/javascript-string-replace-method
https://www.javatpoint.com/javascript-string-substr-method
https://www.javatpoint.com/javascript-string-substring-method
https://www.javatpoint.com/javascript-string-slice-method
https://www.javatpoint.com/javascript-string-tolowercase-method
https://www.javatpoint.com/javascript-string-tolocalelowercase-method
https://www.javatpoint.com/javascript-string-touppercase-method
https://www.javatpoint.com/javascript-string-tolocaleuppercase-method
https://www.javatpoint.com/javascript-string-tostring-method
https://www.javatpoint.com/javascript-string-valueof-method
https://www.javatpoint.com/oprweb/test.jsp?filename=jsstringmethod1

Test it Now

Output:
javascript concat example

3) JavaScript String indexOf(str) Method
The JavaScript String indexOf(str) method returns the index position of the given string.

1. <script>  

2. var s1="javascript from javatpoint indexof";  

3. var n=s1.indexOf("from");  

4. document.write(n);  

5. </script>  

Test it Now

Output:
11

4) JavaScript String lastIndexOf(str) Method
The JavaScript String lastIndexOf(str) method returns the last index position of the given

string.

1. <script>  

2. var s1="javascript from javatpoint indexof";  

3. var n=s1.lastIndexOf("java");  

4. document.write(n);  

5. </script>  

Test it Now

Output:
16

5) JavaScript String toLowerCase() Method
The JavaScript String toLowerCase() method returns the given string in lowercase

letters.

1. <script>  

2. var s1="JavaScript toLowerCase Example";  

3. var s2=s1.toLowerCase();  

4. document.write(s2);  

5. </script>  

Test it Now

Output:
javascript tolowercase example

6) JavaScript String toUpperCase() Method
The JavaScript String toUpperCase() method returns the given string in uppercase

letters.

1. <script>  

2. var s1="JavaScript toUpperCase Example";  

3. var s2=s1.toUpperCase();  

4. document.write(s2);  

https://www.javatpoint.com/oprweb/test.jsp?filename=jsstringmethod2
https://www.javatpoint.com/oprweb/test.jsp?filename=jsstringmethod3
https://www.javatpoint.com/oprweb/test.jsp?filename=jsstringmethod4
https://www.javatpoint.com/oprweb/test.jsp?filename=jsstringmethod5

5. </script>  

Test it Now

Output:
JAVASCRIPT TOUPPERCASE EXAMPLE

7) JavaScript String slice(beginIndex, endIndex) Method
The JavaScript String slice(beginIndex, endIndex) method returns the parts of string

from given beginIndex to endIndex. In slice() method, beginIndex is inclusive and

endIndex is exclusive.

1. <script>  

2. var s1="abcdefgh";  

3. var s2=s1.slice(2,5);  

4. document.write(s2);  

5. </script>  

Test it Now

Output:
cde

8) JavaScript String trim() Method
The JavaScript String trim() method removes leading and trailing whitespaces from the

string.

1. <script>  

2. var s1="     javascript trim    ";  

3. var s2=s1.trim();  

4. document.write(s2);  

5. </script>  

JavaScript Form Validation

1. JavaScript form validation

2. Example of JavaScript validation

3. JavaScript email validation

It is important to validate the form submitted by the user because it can have

inappropriate values. So, validation is must to authenticate user.

JavaScript provides facility to validate the form on the client-side so data processing will

be faster than server-side validation. Most of the web developers prefer JavaScript form

validation

The document object represents the whole html document.

When html document is loaded in the browser, it becomes a document object. It is

the root element that represents the html document. It has properties and methods. By

the help of document object, we can add dynamic content to our web page.

As mentioned earlier, it is the object of window. So

1. window.document  

Is same as

https://www.javatpoint.com/oprweb/test.jsp?filename=jsstringmethod6
https://www.javatpoint.com/oprweb/test.jsp?filename=jsstringmethod7
https://www.javatpoint.com/javascript-form-validation
https://www.javatpoint.com/javascript-form-validation
https://www.javatpoint.com/javascript-form-validation#email

Competitive questions on Structures in HindiKeep Watching

1. document  

According to W3C - "The W3C Document Object Model (DOM) is a platform and

language-neutral interface that allows programs and scripts to dynamically access and

update the content, structure, and style of a document."

Properties of document object

Let's see the properties of document object that can be accessed and modified by the

document object. 

Methods of document object

We can access and change the contents of document by its methods.

The important methods of document object are as follows:

Method Description

write("string") writes the given string on the doucment.

writeln("string") writes the given string on the doucment with

newline character at the end.

getElementById() returns the element having the given id value.

getElementsByName() returns all the elements having the given name

value.

getElementsByTagName() returns all the elements having the given tag

name.

getElementsByClassName() returns all the elements having the given class

name.

Accessing field value by document object

In this example, we are going to get the value of input text by user. Here, we are

using document.form1.name.value to get the value of name field.

Here, document is the root element that represents the html document.

form1 is the name of the form.

name is the attribute name of the input text.

value is the property, that returns the value of the input text.

Let's see the simple example of document object that prints name with welcome

message.

1. <script type="text/javascript">  

2. function printvalue(){  

3. var name=document.form1.name.value;  

4. alert("Welcome: "+name);  

5. }  

6. </script>  

7.   

8. <form name="form1">  

9. Enter Name:<input type="text" name="name"/>  

10. <input type="button" onclick="printvalue()" value="print name"/>  

11. </form>  

.

Through JavaScript, we can validate name, password, email, date, mobile numbers and

more fields.

JavaScript Form Validation Example

In this example, we are going to validate the name and password. The name can’t be

empty and password can’t be less than 6 characters long.
46.4M

1K

Features of Java - Javatpoint

Here, we are validating the form on form submit. The user will not be forwarded to the

next page until given values are correct.

1. <script>  

2. function validateform(){  

3. var name=document.myform.name.value;  

4. var password=document.myform.password.value;  

5.   

6. if (name==null || name==""){  

7.   alert("Name can't be blank");  

8.   return false;  

9. }else if(password.length<6){  

10.   alert("Password must be at least 6 characters long.");  

11.   return false;  

12.   }  

13. }  

14. </script>  

15. <body>  

16. <form name="myform" method="post" action="abc.jsp" onsubmit="return validateform()

" >  

17. Name: <input type="text" name="name">
  

18. Password: <input type="password" name="password">
  

19. <input type="submit" value="register">  

20. </form>  

Test it Now

https://www.javatpoint.com/oprweb/test.jsp?filename=jsvalidation1

JavaScript Retype Password Validation

1. <script type="text/javascript">  

2. function matchpass(){  

3. var firstpassword=document.f1.password.value;  

4. var secondpassword=document.f1.password2.value;  

5.   

6. if(firstpassword==secondpassword){  

7. return true;  

8. }  

9. else{  

10. alert("password must be same!");  

11. return false;  

12. }  

13. }  

14. </script>  

15.   

16. <form name="f1" action="register.jsp" onsubmit="return matchpass()">  

17. Password:<input type="password" name="password" />
  

18. Re-enter Password:<input type="password" name="password2"/>
  

19. <input type="submit">  

20. </form>  

Test it Now

JavaScript Number Validation

Let's validate the textfield for numeric value only. Here, we are using isNaN() function.

1. <script>  

2. function validate(){  

3. var num=document.myform.num.value;  

4. if (isNaN(num)){  

5.   document.getElementById("numloc").innerHTML="Enter Numeric value only";  

6.   return false;  

7. }else{  

8.   return true;  

9.   }  

10. }  

11. </script>  

12. <form name="myform" onsubmit="return validate()" >  

13. Number: <input type="text" name="num">
  

14. <input type="submit" value="submit">  

15. </form>  

https://www.javatpoint.com/oprweb/test.jsp?filename=jsvalidation4%22%20/t%20%22_blank

Name of Faculty . Mr Santosh Kulkarni

Subject Networking

Programme:- BCA II Sem III

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of Management

Career Development and Research.
156-B Railway Lines Solapur.

Affilated PAH Solapur University

Data representation

• Data representation. ... A binary digit, or bit,

is the smallest unit of data in computing. It

is represented by a 0 or a 1. Binary numbers

are made up of binary digits (bits), eg the

binary number 1001. The circuits in

a computer's processor are made up of

billions of transistors.

Concepts of computer communication

• Communication is the process of transferring
messages from one point to another

• It is defined as exchange of data between two
devices via some form of transmission media
such as a cable, wire or it can be air or vacuum
also. For occurrence of data communication,
communicating devices must be a part of
communication system made up of a
combination of hardware or software devices and
programs.

• Data Communication System Components :

There are mainly five components of a data

communication system:

• 1. Message 2. Sender 3. Receiver 4.

Transmission Medium 5. Set of rules (Protocol)

• For Example When we speak to our friend on the telephone
we are the sender, the telephone line, through which our
voice is transmitted is the medium and friend is the
receiver.. This is a simple example of voice communication.
The same concept for data communication also. Data
communication is the function of transporting data from
one location to another. In this example the sender and
receiver are normally machines for example computers
,transmission medium is telephone lines, satellites and
messages that are transmitted are data Hence the
electronic systems ,which transfer data from one location
to another are called data communication system.

• Message :

This is most useful asset of a data

communication system. The message simply

refers to data or piece of information which is

to be communicated. A message could be in

any form, it may be in form of a text file, an

audio file, a video file, etc.

• Sender :
To transfer message from source to destination,
someone must be there who will play role of a
source. Sender plays part of a source in data
communication system. It is simple a device that
sends data message. The device could be in form
of a computer, mobile, telephone, laptop, video
camera, or a workstation, etc.

•

• Receiver :
It is destination where finally message sent by source has arrived. It
is a device that receives message. Same as sender, receiver can also
be in form of a computer, telephone mobile, workstation, etc.

•

• Transmission Medium :
In entire process of data communication, there must be something
which could act as a bridge between sender and receiver,
Transmission medium plays that part. It is physical path by which
data or message travels from sender to receiver. Transmission
medium could be guided (with wires) or unguided (without wires),
for example, twisted pair cable, fiber optic cable, radio waves,
microwaves, etc.

• Set of rules (Protocol) :
To govern data communications, various sets of
rules had been already designed by the designers
of the communication systems, which represent a
kind of agreement between communicating
devices. These are defined as protocol. In simple
terms, the protocol is a set of rules that govern
data communication. If two different devices are
connected but there is no protocol among them,
there would not be any kind of communication
between those two devices. Thus the protocol is
necessary for data communication to take place.

Data Transimmsion modes or

Communication Components

• There are 3 types of transmission modes

which are given below: Simplex mode, Half

duplex mode, and Full duplex mode. These are

explained as following below.

• Simplex mode:

In simplex mode, Sender can send the data

but that sender can’t receive the data. It is a
unidirectional communication.

• Half-duplex mode:

In half duplex mode, Sender can send the data

and also can receive the data but one at a

time. It is two-way directional communication

but one at a time.

• Full duplex mode:

In full duplex mode, Sender can send the data

and also can receive the data simultaneously.

It is two-way directional communication

simultaneously.

Computer Network

• A computer network is a network of

geographically distributed multiple computers

connected to enable meaningful transmission

and exchange of information among them.

Sharing of information ,sharing of resources

(both hardware and software) and sharing of

processing load are some of the major

objectivies of a computer network

Uses of Computer Network

• Computer networks support an enormous

number of applications and services such as

access to the World Wide Web, digital video,

digital audio, shared use of application and

storage servers, printers, and fax machines,

and use of email and instant messaging

applications as well as many others.

network

N/W Components:

• Hubs

• A hub is basically a multiport repeater. A hub connects
multiple wires coming from different branches, for
example, the connector in star topology which
connects different stations. Hubs cannot filter data, so
data packets are sent to all connected devices. In other
words, collision domain of all hosts connected through
Hub remains one. Also, they do not have intelligence
to find out best path for data packets which leads to
inefficiencies and wastage.

•

• Types of Hub

• Active Hub:- These are the hubs which have their own
power supply and can clean, boost and relay the signal
along with the network. It serves both as a repeater as
well as wiring centre. These are used to extend the
maximum distance between nodes.

• Passive Hub :- These are the hubs which collect wiring
from nodes and power supply from active hub. These
hubs relay signals onto the network without cleaning
and boosting them and can’t be used to extend the
distance between nodes.

 Switch

• Switch – A switch is a multiport bridge with a
buffer and a design that can boost its efficiency(a
large number of ports imply less traffic) and
performance. A switch is a data link layer
device. The switch can perform error checking
before forwarding data, that makes it very
efficient as it does not forward packets that have
errors and forward good packets selectively to
correct port only. In other words, switch divides
collision domain of hosts, but broadcast
domain remains same.

Repeater

• Repeater – A repeater operates at the physical
layer. Its job is to regenerate the signal over the
same network before the signal becomes too
weak or corrupted so as to extend the length to
which the signal can be transmitted over the
same network. An important point to be noted
about repeaters is that they do not amplify the
signal. When the signal becomes weak, they copy
the signal bit by bit and regenerate it at the
original strength. It is a 2 port device.

Bridege

• Bridge – A bridge operates at data link layer. A bridge is a repeater, with add on the
functionality of filtering content by reading the MAC addresses of source and
destination. It is also used for interconnecting two LANs working on the same
protocol. It has a single input and single output port, thus making it a 2 port
device.

• Types of Bridges

• Transparent Bridges:- These are the bridge in which the stations are completely
unaware of the

• bridge’s existence i.e. whether or not a bridge is added or deleted from the
network, reconfiguration of

• the stations is unnecessary. These bridges make use of two processes i.e. bridge
forwarding and bridge learning.

• Source Routing Bridges:- In these bridges, routing operation is performed by
source station and the frame specifies which route to follow. The hot can discover
frame by sending a special frame called discovery frame, which spreads through
the entire network using all possible paths to destination.

Routers

• – A router is a device like a switch that routes

data packets based on their IP addresses.

Router is mainly a Network Layer device.

Routers normally connect LANs and WANs

together and have a dynamically updating

routing table based on which they make

decisions on routing the data packets. Router

divide broadcast domains of hosts connected

through it.

Gateway –

• A gateway, as the name suggests, is a passage

to connect two networks together that may

work upon different networking models. They

basically work as the messenger agents that

take data from one system, interpret it, and

transfer it to another system. Gateways are

also called protocol converters and can

operate at any network layer. Gateways are

generally more complex than switch or router.

Applications of Internet

• Sending and receiving email

• Searching and browsing information archives

• Copying files between computers

• Conducting financial transactions

• Playing computer games

• Video and music streaming

• Chat or voice communication (direct
messaging, video conferencing)

• Internet allows us to communicate with the people sitting at remote locations. There are various apps available on the wed that uses

Internet as a medium for communication. One can find various social networking sites such as:

– Facebook

– Twitter

– Instagram

• One can surf for any kind of information over the internet. Information regarding various topics such as Technology, Health & Science,

Social Studies, Geographical Information, Information Technology, Products etc can be surfed with help of a search engine.

• Apart from communication and source of information, internet also serves a medium for entertainment. Following are the various

modes for entertainment over internet.

– Online Television jio tv

– Online computer Games bike race car race, chess

– Songs

– Videos

– Social Networking Apps

• Internet allows us to use many services like:

– Internet Banking

– Online Shopping

– Online Ticket Booking

– Online Bill Payment

– Data Sharing

– E-mail

• Internet provides concept of electronic commerce, that allows the business deals to be conducted on electronic systems

Thank You !!!

Any Queries
9420779969/kulkarnisantosh5273

@gmail.com

 Mrs. Snehal Pathak 34

Name of Faculty . Mr Santosh Kulkarni

Subject IT in MGT

Programme:- BBAII Sem III

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of

Management Career Development and

Research.
156-B Railway Lines Solapur.

Affilated PAH Solapur University

Introduction to computer

Computer is derived from Latin word Compute means to calculate

For long Years ago people used people used stone for calculation like

addition,subtraction, multiplication division

They required a machine for calculation

For addition,subtraction ,multiplication,division

Abacus was the first machine for calculation

Charles babbage invented a machine was called Analytical engine a Mechanical

device

It contains processor,memory

From this machine a comuter was developed

So charles babbage is known as father of computer

Defination of computer

Half Defination

Computer is an electronic device

Full Defination

Computer is an electronic device it accepts data,instruction process data according

to instruction and gives out put

Characterstics of computer

Speed

A computer works with much higher speed and accuracy compared to humans while
performing mathematical calculations. Computers can process millions (1,000,000) of
instructions per second. The time taken by computers for their operations is microseconds and
nanoseconds.

Accuracy

Computers perform calculations with 100% accuracy. Errors may occur due to data

inconsistency or inaccuracy.

Diligence

A computer can perform millions of tasks or calculations with the same consistency and
accuracy. It doesn’t feel any fatigue or lack of concentration. Its memory also makes it superior
to that of human beings.

Versatility

Versatility refers to the capability of a computer to perform different kinds of works with same

accuracy and efficiency.

Reliability

A computer is reliable as it gives consistent result for similar set of data i.e., if we give same set

of input any number of times, we will get the same result.

Automation

Computer performs all the tasks automatically i.e. it performs tasks without manual

intervention.

Memory

A computer has built-in memory called primary memory where it stores data.

Secondary storage are removable devices such as CDs, pen drives, etc., which are also used

to store data.

Evolution of Hardware and software

Hardware

Physical parts of computer is called Hardware

Software

To solve specific problem we require software

Software can be divided in to two categories

1) System software

2)Application softwarwere

Application software

It is aset of one or more programs designed to solve specific problem or do a

specific task

E.g

Tally ,Payroll ,library invoice etc

System software

It is a set of one or more programs designed to control the operation and extend the

processing capability of the computer system

Functions

1) Supports the development of other application software

2) Supports the execution of other application softwar

3) Communicates with input and output devices

4) Monitor the use of hardware devices

Most commonly known types of system software

1)Operating system – Every computer has an operating system which takes care of

the effective and efficient utlisation of all the hardware and software

2)Programming language translators

Compiler, Interpreter

3) Communication software

Utility programs

1) Backup

2) Defragmentor

Firmware

In Computing firmware is a specific class of computer Software that provides the

low-level control for a device's specific hardware. Firmware can either provide a

standardized operating environment for more complex device software or, for less

complex devices, act as the device's complete Operating system, performing all

control, monitoring and data manipulation functions. Typical examples of devices

containing firmware areembeded Systems, consumer appliances, computers,

computer peripherals, and others. Almost all electronic devices beyond the simplest

contain some firmware.

Firmware is held inNon volatile Memory devices such asROM ,EPROM orFlash

MEM

Applications of computers in various fields

Following are some examples of uses of computers:

(1)Medical Field. Computers are used in hospital management system, patient

history, CT Scan, X-ray, ECG, other medical tests, monitoring and diagnosis

purpose.

(2) Homes. ...

(3) Entertainment. ...

(4) Government. ...

(5) Business. ...

(6) Industry. ...

(7) Education.

Structure of computer:

Input Unit

This unit contains devices with the help of which we enter data into computer. This
unit makes link between user and computer. The input devices translate the
information into the form understandable by computer.

CPU (Central Processing Unit)

CPU is considered as the brain of the computer. CPU performs all types of data
processing operations. It stores data, intermediate results and instructions(program).
It controls the operation of all parts of computer.

CPU itself has following three components

 ALU(Arithmetic Logic Unit)
 Memory Unit

 Control Unit

Output Unit

Output unit consists of devices with the help of which we get the information from
computer. This unit is a link between computer and users. Output devices translate
the computer’s output into the form understandable by users.

Sr.No. Operation Description

1

Take Input

The process of entering data and instructions into
the computer system

2

Store Data

Saving data and instructions so that they are
available for processing as and when required.

3

Processin
g Data

Performing arithmetic, and logical operations on data
in order to convert them into useful information.

4

Output
Informatio
n

The process of producing useful information or
results for the user, such as a printed report or
visual display.

5

Control
the
workflow

Directs the manner and sequence in which all of
the above operations are performed.

Output Devices

Introduction to Motherboard

• A motherboard (also called mainboard, main circuit

board, system board, baseboard, planar board, logic

board,[1] and mobo) is the main printed circuit board (PCB)

in general-purpose computers and other expandable

systems. It holds, and allows communication between, many

of the crucial electronic components of a system, such as

the central processing unit (CPU) and memory, and provides

connectors for other peripherals. Unlike a backplane, a

motherboard usually contains significant sub-systems, such

as the central processor, the chipset's input/output and

memory controllers, interface connectors, and other

components integrated for general use.

• Motherboard means specifically a PCB with expansion

capabilities. As the name suggests, this board is often

referred to as the "mother" of all components attached to it,

which often include peripherals, interface cards, and : sound

https://en.wikipedia.org/wiki/Motherboard
https://en.wikipedia.org/wiki/Sound_card

cards, video cards, network cards, hard drives, and other

forms of persistent storage; TV tuner cards, cards providing

extra USB or FireWire slots; and a variety of other custom

components.

• Similarly, the term mainboard describes a device with a

single board and no additional expansions or capability, such

as controlling boards in laser printers, television sets,

washing machines, mobile phones, and other embedded

systems with limited expansion abilities.

SMPS (Switched Mode Power Supply

https://en.wikipedia.org/wiki/Sound_card

SMPS stands for switch-mode power supply. Its job is to convert

wall-voltage AC power to lower voltage DC power. Most computer

chips in modern computers require power in the general

neighborhood of 1.2-3.3V, with some older devices requiring

between 5-12V DC

SMPS stands for switch-mode power supply. Its job is to convert

wall-voltage AC power to lower voltage DC power. Most computer

chips in modern computers require power in the general

neighborhood of 1.2-3.3V, with some older devices requiring

between 5-12V DC

Math Coprocessor

• The math coprocessor was an optional add-on for the Intel

8086, 80386 and 80486 processors that allowed computers

to perform faster mathematical calculations, increasing its

overall performance. Today, all computer processors are

released with a math coprocessor incorporated onto the

processor.

Expansion slots

• Alternatively known as a bus slot or expansion port, an expansion slot is a

connection or port inside a computer on the motherboard or riser card. It provides

an installation point for a hardware expansion card to be connected. For

example, if you wanted to install a new video card in the computer, you'd

purchase a video expansion card and install that card into the compatible

expansion slot.

• Below is a listing of expansion slots commonly found in a computer and the devices associated

with those slots. Clicking on any of the links below provide you with additional details.

• AGP - Video card.

• AMR - Modem, sound card.

• CNR - Modem, network card, sound card.

• EISA - SCSI, network card, video card.

• ISA - Network card, sound card, video card.

• PCI - Network card, SCSI, sound card, video card.

• PCI Express - Video card, modem, sound card, network card.

• VESA - Video card.

Serial and parallel ports

• The main difference between a serial port and a parallel port is that

a serial port transmits data one bit after another, while a parallel port transmits

all 8 bits of a byte in parallel. ... Computers have both serial and parallel

ports along with newer technology called a USB (Universal Serial Bus) port

Limitation of Computer

• Computer cannot operate without the instructions given by humans. It is

programmed to work effectively, fast and accurately. Computer cannot think by

itself and does not have common sense.

Thank You !!!

Any Queries
9420779969/kulkarnisantosh52

73

@gmail.com

 Mrs. Snehal Pathak 15

Faculty-Nilima Mondhe

Subject-C++ II

Sem- IV

In C++, inheritance is a process in which one object gets all the data members and

Functions of its parent object automatically. In such way, you can reuse, extend or

modify the attributes and behaviors which are defined in other class.

In C++, the class which inherits the members of another class is called derived class

and the class whose members are inherited is called base class. The derived class is the

specialized class for the base class.

Advantage of C++ Inheritance

Code reusability: Now you can reuse the members of your parent class. So, there is no

need to define the member again. So less code is required in the class.

Types Of Inheritance

C++ supports five types of inheritance:

o Single inheritance

o Multiple inheritance

o Hierarchical inheritance

o Multilevel inheritance

o Hybrid inheritance

Derived Classes

A Derived class is defined as the class derived from the base class.

The Syntax of Derived class:

1. class derived_class_name :: visibility-mode base_class_name

2. {

3. // body of the derived class.

4. }

Where,

derived_class_name: It is the name of the derived class.

visibility mode: The visibility mode specifies whether the features of the base class are

publicly inherited or privately inherited. It can be public or private.

base_class_name: It is the name of the base class.

o When the base class is privately inherited by the derived class, public members of

the base class becomes the private members of the derived class. Therefore, the

public members of the base class are not accessible by the objects of the derived

class only by the member functions of the derived class.

o When the base class is publicly inherited by the derived class, public members of

the base class also become the public members of the derived class. Therefore,

the public members of the base class are accessible by the objects of the derived

class as well as by the member functions of the base class.

Note:

o In C++, the default mode of visibility is private.

o The private members of the base class are never inherited.

C++ Single Inheritance

Single inheritance is defined as the inheritance in which a derived class is inherited

from the only one base class.

Where 'A' is the base class, and 'B' is the derived class.

C++ Single Level Inheritance Example: Inheriting Fields

When one class inherits another class, it is known as single level inheritance. Let's see

the example of single level inheritance which inherits the fields only.

1. #include <iostream>

2. using namespace std;

3. class Account {

4. public:

5. float salary = 60000;

6. };

7. class Programmer: public Account {

8. public:

9. float bonus = 5000;

10. };

11. int main(void) {

12. Programmer p1;

13. cout<<"Salary: "<<p1.salary<<endl;

14. cout<<"Bonus: "<<p1.bonus<<endl;

15. return 0;

16. }

Output:

Salary: 60000

Bonus: 5000

In the above example, Employee is the base class and Programmer is the derived class.

C++ Single Level Inheritance Example: Inheriting
Methods

Let's see another example of inheritance in C++ which inherits methods only.

1. #include <iostream>

2. using namespace std;

3. class Animal {

4. public:

5. void eat() {

6. cout<<"Eating..."<<endl;

7. }

8. };

9. class Dog: public Animal

10. {

11. public:

12. void bark(){

13. cout<<"Barking...";

14. }

15. };

16. int main(void) {

17. Dog d1;

18. d1.eat();

19. d1.bark();

20. return 0;

21. }

Output:

Eating...

Barking...

Let's see a simple example.

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. int a = 4;

6. int b = 5;

7. public:

8. int mul()

9. {

10. int c = a*b;

11. return c;

12. }

13. };

14.

15. class B : private A

16. {

17. public:

18. void display()

19. {

20. int result = mul();

21. std::cout <<"Multiplication of a and b is : "<<result<< std::endl;

22. }

23. };

24. int main()

25. {

26. B b;

27. b.display();

28.

29. return 0;

30. }

Output:

Multiplication of a and b is : 20

In the above example, class A is privately inherited. Therefore, the mul() function of class

'A' cannot be accessed by the object of class B. It can only be accessed by the member

function of class B.

How to make a Private Member Inheritable

The private member is not inheritable. If we modify the visibility mode by making it

public, but this takes away the advantage of data hiding.

C++ introduces a third visibility modifier, i.e., protected. The member which is declared

as protected will be accessible to all the member functions within the class as well as the

class immediately derived from it.

Visibility modes can be classified into three categories:

o Public: When the member is declared as public, it is accessible to all the

functions of the program.

o Private: When the member is declared as private, it is accessible within the class

only.

o Protected: When the member is declared as protected, it is accessible within its

own class as well as the class immediately derived from it.

Visibility of Inherited Members

Base class visibility Derived class visibility

Public Private Protected

Private Not Inherited Not Inherited Not Inherited

Protected Protected Private Protected

Public Public Private Protected

C++ Multilevel Inheritance

Multilevel inheritance is a process of deriving a class from another derived class.

C++ Multi Level Inheritance Example

When one class inherits another class which is further inherited by another class, it is

known as multi level inheritance in C++. Inheritance is transitive so the last derived class

acquires all the members of all its base classes.

Let's see the example of multi level inheritance in C++.

1. #include <iostream>

2. using namespace std;

3. class Animal {

4. public:

5. void eat() {

6. cout<<"Eating..."<<endl;

7. }

8. };

9. class Dog: public Animal

10. {

11. public:

12. void bark(){

13. cout<<"Barking..."<<endl;

14. }

15. };

16. class BabyDog: public Dog

17. {

18. public:

19. void weep() {

20. cout<<"Weeping...";

21. }

22. };

23. int main(void) {

24. BabyDog d1;

25. d1.eat();

26. d1.bark();

27. d1.weep();

28. return 0;

29. }

Output:

Eating...

Barking...

Weeping...

C++ Multiple Inheritance

Multiple inheritance is the process of deriving a new class that inherits the attributes

from two or more classes.

Syntax of the Derived class:

1. class D : visibility B-1, visibility B-2, ?

2. {

3. // Body of the class;

4. }

Let's see a simple example of multiple inheritance.

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. protected:

6. int a;

7. public:

8. void get_a(int n)

9. {

10. a = n;

11. }

12. };

13.

14. class B

15. {

16. protected:

17. int b;

18. public:

19. void get_b(int n)

20. {

21. b = n;

22. }

23. };

24. class C : public A,public B

25. {

26. public:

27. void display()

28. {

29. std::cout << "The value of a is : " <<a<< std::endl;

30. std::cout << "The value of b is : " <<b<< std::endl;

31. cout<<"Addition of a and b is : "<<a+b;

32. }

33. };

34. int main()

35. {

36. C c;

37. c.get_a(10);

38. c.get_b(20);

39. c.display();

40.

41. return 0;

42. }

Output:

The value of a is : 10

The value of b is : 20

Addition of a and b is : 30

In the above example, class 'C' inherits two base classes 'A' and 'B' in a public mode.

Ambiquity Resolution in Inheritance

Ambiguity can be occurred in using the multiple inheritance when a function with the

same name occurs in more than one base class.

Let's understand this through an example:

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. public:

6. void display()

7. {

8. std::cout << "Class A" << std::endl;

9. }

10. };

11. class B

12. {

13. public:

14. void display()

15. {

16. std::cout << "Class B" << std::endl;

17. }

18. };

19. class C : public A, public B

20. {

21. void view()

22. {

23. display();

24. }

25. };

26. int main()

27. {

28. C c;

29. c.display();

30. return 0;

31. }

Output:

error: reference to 'display' is ambiguous

 display();

o The above issue can be resolved by using the class resolution operator with the

function. In the above example, the derived class code can be rewritten as:

1. class C : public A, public B

2. {

3. void view()

4. {

5. A :: display(); // Calling the display() function of class A.

6. B :: display(); // Calling the display() function of class B.

7.

8. }

9. };

An ambiguity can also occur in single inheritance.

Consider the following situation:

1. class A

2. {

3. public:

4. void display()

5. {

6. cout<<?Class A?;

7. }

8. } ;

9. class B

10. {

11. public:

12. void display()

13. {

14. cout<<?Class B?;

15. }

16. } ;

In the above case, the function of the derived class overrides the method of the base

class. Therefore, call to the display() function will simply call the function defined in the

derived class. If we want to invoke the base class function, we can use the class

resolution operator.

1. int main()

2. {

3. B b;

4. b.display(); // Calling the display() function of B class.

5. b.B :: display(); // Calling the display() function defined in B class.

6. }

C++ Hybrid Inheritance

Hybrid inheritance is a combination of more than one type of inheritance.

Let's see a simple example:

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. protected:

6. int a;

7. public:

8. void get_a()

9. {

10. std::cout << "Enter the value of 'a' : " << std::endl;

11. cin>>a;

12. }

13. };

14.

15. class B : public A

16. {

17. protected:

18. int b;

19. public:

20. void get_b()

21. {

22. std::cout << "Enter the value of 'b' : " << std::endl;

23. cin>>b;

24. }

25. };

26. class C

27. {

28. protected:

29. int c;

30. public:

31. void get_c()

32. {

33. std::cout << "Enter the value of c is : " << std::endl;

34. cin>>c;

35. }

36. };

37.

38. class D : public B, public C

39. {

40. protected:

41. int d;

42. public:

43. void mul()

44. {

45. get_a();

46. get_b();

47. get_c();

48. std::cout << "Multiplication of a,b,c is : " <<a*b*c<< std::endl;

49. }

50. };

51. int main()

52. {

53. D d;

54. d.mul();

55. return 0;

56. }

Output:

Enter the value of 'a' :

10

Enter the value of 'b' :

20

Enter the value of c is :

30

Multiplication of a,b,c is : 6000

C++ Hierarchical Inheritance

Hierarchical inheritance is defined as the process of deriving more than one class from a

base class.

Syntax of Hierarchical inheritance:

1. class A

2. {

3. // body of the class A.

4. }

5. class B : public A

6. {

7. // body of class B.

8. }

9. class C : public A

10. {

11. // body of class C.

12. }

13. class D : public A

14. {

15. // body of class D.

16. }

Let's see a simple example:

1. #include <iostream>

2. using namespace std;

3. class Shape // Declaration of base class.

4. {

5. public:

6. int a;

7. int b;

8. void get_data(int n,int m)

9. {

10. a= n;

11. b = m;

12. }

13. };

14. class Rectangle : public Shape // inheriting Shape class

15. {

16. public:

17. int rect_area()

18. {

19. int result = a*b;

20. return result;

21. }

22. };

23. class Triangle : public Shape // inheriting Shape class

24. {

25. public:

26. int triangle_area()

27. {

28. float result = 0.5*a*b;

29. return result;

30. }

31. };

32. int main()

33. {

34. Rectangle r;

35. Triangle t;

36. int length,breadth,base,height;

37. std::cout << "Enter the length and breadth of a rectangle: " << std::endl;

38. cin>>length>>breadth;

39. r.get_data(length,breadth);

40. int m = r.rect_area();

41. std::cout << "Area of the rectangle is : " <<m<< std::endl;

42. std::cout << "Enter the base and height of the triangle: " << std::endl;

43. cin>>base>>height;

44. t.get_data(base,height);

45. float n = t.triangle_area();

46. std::cout <<"Area of the triangle is : " << n<<std::endl;

47. return 0;

48. }

The word “polymorphism” means having many forms. In simple words, we can define

polymorphism as the ability of a message to be displayed in more than one form. A real-

life example of polymorphism is a person who at the same time can have different

characteristics. Like a man at the same time is a father, a husband and an employee. So

the same person exhibits different behavior in different situations. This is called

polymorphism. Polymorphism is considered as one of the important features of Object-

Oriented Programming. In C++, polymorphism is mainly divided into two types:

• Compile-time Polymorphism

• Runtime Polymorphism

Types of Polymorphism

1. Compile-time polymorphism: This type of polymorphism is achieved by function

overloading or operator overloading.

• Function Overloading: When there are multiple functions with the same name but

different parameters, then the functions are said to be overloaded. Functions can be

overloaded by changing the number of arguments or/and changing the type of

arguments. Rules of Function Overloading

• CPP

// C++ program for function overloading

https://www.geeksforgeeks.org/function-overloading-c/
https://www.geeksforgeeks.org/function-overloading-in-c/

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 public:

 // function with 1 int parameter

 void func(int x)

 {

 cout << "value of x is " << x << endl;

 }

 // function with same name but 1 double parameter

 void func(double x)

 {

 cout << "value of x is " << x << endl;

 }

 // function with same name and 2 int parameters

 void func(int x, int y)

 {

 cout << "value of x and y is " << x << ", " << y << endl;

 }

};

int main() {

 Geeks obj1;

 // Which function is called will depend on the parameters passed

 // The first 'func' is called

 obj1.func(7);

 // The second 'func' is called

 obj1.func(9.132);

 // The third 'func' is called

 obj1.func(85,64);

 return 0;

}

• Output:
value of x is 7

value of x is 9.132

value of x and y is 85, 64

• In the above example, a single function named func acts differently in three different

situations, which is a property of polymorphism.

• Operator Overloading: C++ also provides the option to overload operators. For

example, we can make use of the addition operator (+) for string class to concatenate

two strings. We know that the task of this operator is to add two operands. So a single

operator ‘+’, when placed between integer operands, adds them and when placed

between string operands, concatenates them. Example:

• CPP

// CPP program to illustrate

// Operator Overloading

#include<iostream>

using namespace std;

class Complex {

private:

 int real, imag;

public:

 Complex(int r = 0, int i =0) {real = r; imag = i;}

https://www.geeksforgeeks.org/operator-overloading-c/

 // This is automatically called when '+' is used with

 // between two Complex objects

 Complex operator + (Complex const &obj) {

 Complex res;

 res.real = real + obj.real;

 res.imag = imag + obj.imag;

 return res;

 }

 void print() { cout << real << " + i" << imag << endl; }

};

int main()

{

 Complex c1(10, 5), c2(2, 4);

 Complex c3 = c1 + c2; // An example call to "operator+"

 c3.print();

}

• Output:
12 + i9

• In the above example, the operator ‘+’ is overloaded. Usually, this operator is used to

add two numbers (integers or floating point numbers), but here the operator is made to

perform the addition of two imaginary or complex numbers. To learn about operator

overloading in detail, visit this link.

https://www.geeksforgeeks.org/operator-overloading-c/

1. Runtime polymorphism: This type of polymorphism is achieved by Function

Overriding.

• Function overriding occurs when a derived class has a definition for one of the

member functions of the base class. That base function is said to be overridden.

• CPP

// C++ program for function overriding

#include <bits/stdc++.h>

using namespace std;

class base

{

public:

 virtual void print ()

 { cout<< "print base class" <<endl; }

 void show ()

 { cout<< "show base class" <<endl; }

};

class derived:public base

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/
https://www.geeksforgeeks.org/override-keyword-c/

{

public:

 void print () //print () is already virtual function in derived class, we
could also declared as virtual void print () explicitly

 { cout<< "print derived class" <<endl; }

 void show ()

 { cout<< "show derived class" <<endl; }

};

//main function

int main()

{

 base *bptr;

 derived d;

 bptr = &d;

 //virtual function, binded at runtime (Runtime polymorphism)

 bptr->print();

 // Non-virtual function, binded at compile time

 bptr->show();

 return 0;

}

• Output:
print derived class

show base class

Name of Faculty . Mr Santosh Kulkarni

Subject Cyber Law

Programme:- BCAII Sem IV

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of Management

Career Development and Research.
156-B Railway Lines Solapur.

Affilated PAH Solapur University

what is Cybercrime

• Cyber crime or computer-oriented crime is a crime that includes a
computer and a network. The computer may have been used in the
execution of a crime or it may be the target.
Cyber crime is the use of a computer as a weapon for committing crimes
such as committing fraud, identities theft or breaching privacy. Cyber
crime, especially through the Internet, has grown in importance as the
computer has become central to every field like commerce, entertainment
and government. Cyber crime may endanger a person or a nation’s
security and financial health.

• Cyber crime encloses a wide range of activities but these can generally be
divided into two categories:

• Crimes that aim computer networks or devices. These types of crimes
involves different threats (like virus, bugs etc.) and denial-of-service (DoS)
attacks.

• Crimes that use computer networks to commit other criminal activities.
These types of crimes include cyber stalking, financial fraud or identity
theft.

Types of Cyber Crime:

• Cyber Terrorism:
Cyber terrorism is the use of the computer and internet to
perform violent acts that result in loss of life. This may
include different type of activities either by software or
hardware for threatening life of citizens.
In general, Cyber terrorism can be defined as an act of
terrorism committed through the use of cyberspace or
computer resources.

• Cyber Extortion:
Cyber extortion occurs when a website, e-mail server or
computer system is subjected to or threatened with
repeated denial of service or other attacks by malicious
hackers. These hackers demand huge money in return for
assurance to stop the attacks and to offer protection.

• Cyber Warfare:
Cyber warfare is the use or targeting in a battle space or
warfare context of computers, online control systems and
networks. It involves both offensive and defensive
operations concerning to the threat of cyber attacks,
espionage and sabotage.

• Internet Fraud:
Internet fraud is a type of fraud or deceit which makes use
of the Internet and could include hiding of information or
providing incorrect information for the purpose of
deceiving victims for money or property. Internet fraud is
not considered a single, distinctive crime but covers a range
of illegal and illicit actions that are committed in
cyberspace.

• Cyber Stalking:

This is a kind of online harassment wherein
the victim is subjected to a barrage of online
messages and emails. In this case, these
stalkers know their victims and instead of
offline stalking, they use the Internet to stalk.
However, if they notice that cyber stalking is
not having the desired effect, they begin
offline stalking along with cyber stalking to
make the victims’ lives more miserable.

Classifications of Security attacks

(Passive Attacks and Active Attacks),

• Active attacks: An Active attack attempts to alter
system resources or effect their operations.
Active attack involve some modification of the
data stream or creation of false statement. Types
of active attacks are as following:

• Masquerade –

Masquerade attack takes place when one entity
pretends to be different entity. A Masquerade
attack involves one of the other form of active
attacks.

• Modification of messages –

It means that some portion of a message is

altered or that message is delayed or

reordered to produce an unauthorised effect.

For example, a message meaning “Allow JOHN

to read confidential file X” is modified as

“Allow Smith to read confidential file X”.

• Repudiation –

This attack is done by either sender or receiver. The
sender or receiver can deny later that he/she has send
or receive a message. For example, customer ask his
Bank “To transfer an amount to someone” and later on

the sender(customer) deny that he had made such a
request. This is repudiation.

• Replay –

It involves the passive capture of a message and its
subsequent the transmission to produce an authorized
effect.

• Denial of Service –

It prevents normal use of communication

facilities. This attack may have a specific

target. For example, an entity may suppress all

messages directed to a particular destination.

Another form of service denial is the

disruption of an entire network wither by

disabling the network or by overloading it by

messages so as to degrade performance.

• Passive attacks: A Passive attack attempts to learn or
make use of information from the system but does not
affect system resources. Passive Attacks are in the
nature of eavesdropping on or monitoring of
transmission. The goal of the opponent is to obtain
information is being transmitted. Types of Passive
attacks are as following:

• The release of message content –
Telephonic conversation, an electronic mail message or
a transferred file may contain sensitive or confidential
information. We would like to prevent an opponent
from learning the contents of these transmissions.

• Traffic analysis –
Suppose that we had a way of masking
(encryption) of information, so that the attacker
even if captured the message could not extract
any information from the message.
The opponent could determine the location and
identity of communicating host and could
observe the frequency and length of messages
being exchanged. This information might be
useful in guessing the nature of the
communication that was taking place.

Essential Terminology

• Threat can be anything that can take advantage
of a vulnerability to breach security and
negatively alter, erase, harm object or objects of
interest.

• Software attacks means attack by Viruses,
Worms, Trojan Horses etc. Many users believe
that malware, virus, worms, bots are all same
things. But they are not same, only similarity is
that they all are malicious software that behave
differently.

• Malware is a combination of 2 terms-
Malicious and Software. So Malware basically
means malicious software that can be an
intrusive program code or a anything that is
designed to perform malicious operations on
system. Malware can be divided in 2
categories:

• Infection Methods

• Malware Actions

• Virus – They have the ability to replicate themselves by
hooking them to the program on the host computer like
songs, videos etc and then they travel all over the Internet.
Ther Creeper Virus was first detected on ARPANET.
Examples include File Virus, Macro Virus, Boot Sector Virus,
Stealth Virus etc.

• Worms – Worms are also self replicating in nature but they
don’t hook themselves to the program on host computer.
Biggest difference between virus and worms is that worms
are network aware. They can easily travel from one
computer to another if network is available and on the
target machine they will not do much harm, they will for
example consume hard disk space thus slowing down the
computer.

• Malware on the basis of Actions:
• Adware – Adware is not exactly malicious but they do

breach privacy of the users. They display ads on computer’s
desktop or inside individual programs. They come attached
with free to use software, thus main source of revenue for
such developers. They monitor your interests and display
relevant ads. An attacker can embed malicious code inside
the software and adware can monitor your system
activities and can even compromise your machine.

• Spyware – It is a program or we can say a software that
monitors your activities on computer and reveal collected
information to interested party. Spyware are generally
dropped by Trojans, viruses or worms. Once dropped they
installs themselves and sits silently to avoid detection.

• Theft of intellectual property means violation
of intellectual property rights like copyrights,
patents etc.

• Identity theft means to act someone else to
obtain person’s personal information or to
access vital information they have like
accessing the computer or social media
account of a person by login into the account
by using their login credentials.

• Theft of equipment and information is increasing
these days due to the mobile nature of devices and
increasing information capacity.

• Social media attacks – In this cyber criminals identify
and infect a cluster of websites that persons of a
particular organisation visit, to steal information.

• Mobile Malware –There is a saying when there is a
connectivity to Internet there will be danger to
Security. Same goes to Mobile phones where gaming
applications are designed to lure customer to
download the game and unintentionally they will
install malware or virus in the device.

• Corporate data on personal devices – These

days every organization follows a rule BYOD.

BYOD means Bring your own device like

Laptops, Tablets to the workplace. Clearly

BYOD pose a serious threat to security of data

but due to productivity issues organizations

are arguing to adopt this.

Vulnerabilities

• Vulnerabilities are weaknesses in a system
that gives threats the opportunity to
compromise assets. All systems have
vulnerabilities. Even though the technologies
are improving but the number of
vulnerabilities are increasing such as tens of
millions of lines of code, many developers,
human weaknesses, etc. Vulnerabilities mostly
happened because of Hardware, Software,
Network and Procedural vulnerabilities.

• . Software Vulnerability:

A software error happen in development or

configuration such as the execution of it can

violate the security policy. For examples:

• Lack of input validation

• Unverified uploads

• Cross-site scripting

• Unencrypted data, etc.

• Network Vulnerability:

A weakness happen in network which can be
hardware or software.
For examples:

• Unprotected communication

• Malware or malicious software (e.g.:Viruses,
Keyloggers, Worms, etc)

• Social engineering attacks

• Misconfigured firewalls

• Procedural Vulnerability:

A weakness happen in an organization operational
methods.
For examples:

• Password procedure – Password should follow the
standard password policy.

• Training procedure – Employees must know which
actions should be taken and what to do to handle the
security. Employees must never be asked for user
credentials online. Make the employees know social
engineering and phishing threats.

Thank You !!!

Any Queries
9420779969/kulkarnisantosh5273

@gmail.com

 Mrs. Snehal Pathak 30

Name of Faculty . Mr Santosh Kulkarni

Subject DBMS

Programme:- BCAII Sem IV

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of Management

Career Development and Research.
156-B Railway Lines Solapur.

S.P. Mandali Pune
Affilated PAH Solapur University

Database Design

• Types of data models- Relational, Network,

Hierarchical

• Hierarchical Data Model

• Hierarchical data model is the oldest type of the data
model. It was developed by IBM in 1968. It organizes
data in the tree-like structure. Hierarchical model
consists of the the following :

• It contains nodes which are connected by branches.

• The topmost node is called the root node.

• If there are multiple nodes appear at the top level,
then these can be called as root segments.

• Each node has exactly one parent.

• One parent may have many child.

• In the above figure, Electronics is the root

node which has two children i.e. Televisions

and Portable Electronics. These two has

further children for which they act as parent.

For example: Television has children as Tube,

LCD and Plasma, for these three Television act

as parent. It follows one to many relationship.

2. Network Data Model :

• It is the advance version of the hierarchical

data model. To organize data it uses directed

graphs instead of the tree-structure. In this

child can have more than one parent. It uses

the concept of the two data structures i.e.

Records and Sets.

• In the above figure, Project is the root node
which has two children i.e. Project 1 and
Project 2. Project 1 has 3 children and Project
2 has 2 children. Total there are 5 children i.e
Department A, Department B and Department
C, they are network related children as we
said that this model can have more than one
parent. So, for the Department B and
Department C have two parents i.e. Project 1
and Project 2.

• In the above diagram , Project is the root node
which has two children i.e. Project 1 and
Project 2. Project 1 has 3 children and Project
2 has 2 children. Total there are 5 children i.e
Department A, Department B and Department
C, they are network related children as we
said that this model can have more than one
parent. So, for the Department B and
Department C have two parents i.e. Project 1
and Project 2.

Relational Model

• Relational Model was proposed by E.F. Codd to model data
in the form of relations or tables. After designing the
conceptual model of Database using ER diagram, we need
to convert the conceptual model in the relational model
which can be implemented using any RDMBS languages like
Oracle SQL, MySQL etc. So we will see what Relational
Model is.

• What is Relational Model?

• Relational Model represents how data is stored in
Relational Databases. A relational database stores data in
the form of relations (tables). Consider a relation STUDENT
with attributes ROLL_NO, NAME, ADDRESS, PHONE and
AGE shown in Table 1.

ROLL_NO NAME ADDRESS PHONE AGE

1

RAM

DELHI

9455123451

18

2

RAMESH

GURGAON

9652431543

18

3

SUJIT

ROHTAK

9156253131

20

4 SURESH DELHI 1

• The relational data model was introduced by C. F. Codd in 1970. Currently,
it is the most widely used data model. The relational data model describes
the world as “a collection of inter-related relations (or tables).” A
relational data model involves the use of data tables that collect groups of
elements into relations. These models work based on the idea that each
table setup will include a primary key or identifier. Other tables use that
identifier to provide "relational" data links and results.

• Today, there are many commercial Relational Database Management
System (RDBMS), such as Oracle, IBM DB2, and Microsoft SQL Server.
There are also many free and open-source RDBMS, such as MySQL, mSQL
(mini-SQL) and the embedded Java DB (Apache Derby). Database
administrators use Structured Query Language (SQL) to retrieve data
elements from a relational database.

•

• As mentioned, the primary key is a fundamental tool in creating and using
relational data models. It must be unique for each member of a data set. It
must be populated for all members. Inconsistencies can cause problems in
how developers retrieve data. Other issues with relational database
designs include excessive duplication of data, faulty or partial data, or
improper links or associations between tables. A large part of routine
database administration involves evaluating all the data sets in a database
to make sure that they are consistently populated and will respond well to
SQL or any other data retrieval method.

• For example, a conventional database row would represent a tuple, which
is a set of data that revolves around an instance or virtual object so that
the primary key is its unique identifier. A column name in a data table is
associated with an attribute, an identifier or feature that all parts of a data
set have. These and other strict conventions help to provide database
administrators and designers with standards for crafting relational
database setups.

• E-R model: entities, attributes and its types,
Relationship, Relationship

• Entity, Entity Type, Entity Set –

• An Entity may be an object with a physical existence –
a particular person, car, house, or employee – or it may
be an object with a conceptual existence – a company,
a job, or a university course.

• An Entity is an object of Entity Type and set of all
entities is called as entity set. e.g.; E1 is an entity
having Entity Type Student and set of all students is
called Entity Set. In ER diagram, Entity Type is
represented as:

• Attribute(s):

Attributes are the properties which define the
entity type. For example, Roll_No, Name,
DOB, Age, Address, Mobile_No are the
attributes which defines entity type Student.
In ER diagram, attribute is represented by an

oval.

•

• Relationship Type and Relationship Set:

• Attributes

• Entities are represented by means of their
properties, called attributes. All attributes have
values. For example, a student entity may have
name, class, and age as attributes.

• There exists a domain or range of values that can
be assigned to attributes. For example, a
student's name cannot be a numeric value. It has
to be alphabetic. A student's age cannot be
negative, etc.

Types of Attributes

• Simple attribute − Simple attributes are atomic values,
which cannot be divided further. For example, a student's
phone number is an atomic value of 10 digits.

• Composite attribute − Composite attributes are made of
more than one simple attribute. For example, a student's
complete name may have first_name and last_name.

• Derived attribute − Derived attributes are the attributes
that do not exist in the physical database, but their values
are derived from other attributes present in the database.
For example, average_salary in a department should not be
saved directly in the database, instead it can be derived.
For another example, age can be derived from
data_of_birth.

• Single-value attribute − Single-value

attributes contain single value. For example −
Social_Security_Number.

• Multi-value attribute − Multi-value attributes

may contain more than one values. For

example, a person can have more than one

phone number, email_address, etc.

• Relationship

• The association among entities is called a

relationship. For example, an

employee works_at a department, a

student enrolls in a course. Here, Works_at

and Enrolls are called relationships.

• Relationship Set

• A set of relationships of similar type is called a

relationship set. Like entities, a relationship

too can have attributes. These attributes are

called descriptive attributes.

Student

• One-to-one − One entity from entity set A can

be associated with at most one entity of entity

set B and vice versa.

• E.g. Each student has unique roll no

• Has Roll No

• Many to one – When entities in one entity

set can take part only once in the relationship

set and entities in other entity set can take

part more than once in the relationship

set, cardinality is

• Many to many – When entities in all entity

sets can take part more than once in the

relationship cardinality is many to many. Let

us assume that a student can take more than

one course and one course can be taken by

many students. So the relationship will be

many to many.

Generalization

• Generalization is the process of extracting
common properties from a set of entities and
create a generalized entity from it. It is a bottom-
up approach in which two or more entities can be
generalized to a higher level entity if they have
some attributes in common. For Example,
STUDENT and FACULTY can be generalized to a
higher level entity called PERSON as shown in
Figure 1. In this case, common attributes like
P_NAME, P_ADD become part of higher entity
(PERSON) and specialized attributes like S_FEE
become part of specialized entity (STUDENT).

• Specialization –

• n specialization, an entity is divided into sub-entities
based on their characteristics. It is a top-down
approach where higher level entity is specialized into
two or more lower level entities. For Example,
EMPLOYEE entity in an Employee management system
can be specialized into DEVELOPER, TESTER etc. as
shown in Figure 2. In this case, common attributes like
E_NAME, E_SAL etc. become part of higher entity
(EMPLOYEE) and specialized attributes like TES_TYPE
become part of specialized entity (TESTER).

• Aggregation –

• An ER diagram is not capable of representing
relationship between an entity and a relationship
which may be required in some scenarios. In those
cases, a relationship with its corresponding entities is
aggregated into a higher level entity. For Example,
Employee working for a project may require some
machinery. So, REQUIRE relationship is needed
between relationship WORKS_FOR and entity
MACHINERY. Using aggregation, WORKS_FOR
relationship with its entities EMPLOYEE and PROJECT is
aggregated into single entity and relationship REQUIRE
is created between aggregated entity and MACHINERY.

• Relational Model: Relation, Domain, Tuples,

Degree, cardinality

• Relational Model was proposed by E.F. Codd to
model data in the form of relations or tables.
After designing the conceptual model of
Database using ER diagram, we need to convert
the conceptual model in the relational model
which can be implemented using any RDMBS
languages like Oracle SQL, MySQL etc. So we will
see what Relational Model is.

• What is Relational Model?

• Relational Model represents how data is

stored in Relational Databases. A relational

database stores data in the form of relations

(tables). Consider a relation STUDENT with

attributes ROLL_NO, NAME, ADDRESS, PHONE

and AGE shown in Table 1.

ROLL_NO NAME

STUDENT

ADDRESS PHONE AGE

1

RAM

DELHI

9455123451

18

2

RAMESH

GURGAON

9652431543

18

3

SUJIT

ROHTAK

9156253131

20

4 SURESH DELHI 18

• Attribute: Attributes are the properties that

define a relation. e.g.; ROLL_NO, NAME

• Tuple: Each row in the relation is known as

tuple. The above relation contains 4 tuples,

one of which is shown as:

RAM
DELHI 9455123451 18

• Degree: The number of attributes in the

relation is known as degree of the relation.

The STUDENT relation defined above has

degree 5.

•

• Cardinality: The number of tuples in a relation is
known as cardinality. The STUDENT relation
defined above has cardinality 4.

• The set of all possible values of an attribute, such
as integers from 0 to 100 for a grade, is the
attribute domain. In an ER model, an attribute
name appears in an oval that has a line to the
corresponding entity box, such as in Figure 3. ...
The set of all possible values of an attribute is the
attribute domain.

Relational Algebra operations

• Relational algebra is a procedural query
language, which takes instances of relations as
input and yields instances of relations as
output. It uses operators to perform queries.
An operator can be either unary or binary.
They accept relations as their input and yield
relations as their output. Relational algebra is
performed recursively on a relation and
intermediate results are also considered
relations.

• Select Operation (σ)
• It selects tuples that satisfy the given predicate from a

relation.

• Notation − σp(r)

• Where σ stands for selection predicate and r stands for
relation. p is prepositional logic formula which may use
connectors like and, or, and not. These terms may use
relational operators like − =, ≠, ≥, < , >, ≤.

• For example −

• σsubject = "database"(Books) Output − Selects tuples from
books where subject is 'database'.

• Project Operation (∏)
• It projects column(s) that satisfy a given predicate.

• Notation − ∏A1, A2, An (r)

• Where A1, A2 , An are attribute names of relation r.

• Duplicate rows are automatically eliminated, as
relation is a set.

• For example −

• ∏subject, author (Books) Selects and projects columns
named as subject and author from the relation Books.

• Union Operation (𝖴)

• It performs binary union between two given relations and is defined
as −

• r 𝖴 s = { t | t ∈ r or t ∈ s} Notation − r U s

• Where r and s are either database relations or relation result set
(temporary relation).

• For a union operation to be valid, the following conditions must
hold −

• r, and s must have the same number of attributes.

• Attribute domains must be compatible.

• Duplicate tuples are automatically eliminated.

• ∏ author (Books) 𝖴 ∏ author (Articles) Output − Projects the names of
the authors who have either written a book or an article or both.

• Set Difference (−)
• The result of set difference operation is tuples,

which are present in one relation but are not in
the second relation.

• Notation − r − s

• Finds all the tuples that are present in r but not
in s.

• ∏ author (Books) − ∏ author (Articles) Output −
Provides the name of authors who have written
books but not articles.

• Cartesian Product (Χ)
• Combines information of two different relations

into one.

• Notation − r Χ s

• Where r and s are relations and their output will
be defined as −

• r Χ s = { q t | q ∈ r and t ∈ s}

• σauthor = 'tutorialspoint'(Books Χ Articles) Output −
Yields a relation, which shows all the books and
articles written by tutorialspoint.

Thank You !!!

Any Queries
9420779969/kulkarnisantosh5273

@gmail.com

 Mrs. Snehal Pathak 55

Name of Faculty . Mr Santosh Kulkarni

Subject DBMS

Programme:- BCAII Sem IV

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of

Management Career Development and

Research.
156-B Railway Lines Solapur.

Affilated PAH Solapur University

Introduction to database manangement System

• Concept of Data and Information

• Data can be defined as a collection of facts and figures.

• Each organisation has to record the details of such transaction and use it for further

processing like preparing balance sheet,profit and loss a/c

• Such a processing is done on data it is called information So information is a processed data

• Which helps the managers to make decision

• Data

• Data is collection of facts No Conclusion can be drawn on data . Data can not be used for

decision making. Data is a raw material e.g 1

• Information

• Information is a processed form of data .Information can be used to draw conclusion.

Information plays an important role in decision making .information is just like a finished

product e.g. roll no 1

Need of Database Management

• The term database can be defined as a collection of interrelated data of an organisation .

Any organization has to maintain the records of all its activities which are interdependent

e.g. The purchase department has to maintain records of purchases and plan for future

purchase which depend on the current stock position maintained by stores department

Production department produces finished product according to the sales orders provided by

Sales department Production department uses raw material in stores department for

production

• So unless Stock department is given a report of items with reorder level stock Purchase

depatment can not purchase material. .As the stock has reched at minimum reorder level

.Production department can not proceed with production and sales department can not

fulfil the sales order

• Thus if any organization fails to produce proper reports . The whole organisation can not run

smoothly

• The above example shows the need of database management system

• The database of an organisatin must be maintained in such a way that it can be used to

produce effective reports at times

• Constructing the database: Insertion,Updation and Deletion of data

• Manipulating the database:- Querying the database and Generating the reports Role

of Database Management System

• Constructing the database: Insertion,Updation and Deletion of data

• Manipulating the database:- Querying the database and Generating the reports

Limitations of traditional file system

• 1) Data Redundancy and Inconsistency

• 2) Difficulty in Accessing data

• 3) Integrity problems

Stores

Production

Sales Accounting

Purchase

• 4) Concurrent Access Problems

• Security Problems

Thank You !!!

Any Queries
9420779969/kulkarnisantosh5

273

@gmail.com

 Mrs. Snehal Pathak 7

ASP.NET
By Deshpande M.K.

What is ASP.Net?
 ASP.Net is a web development platform, which provides a programming model, a

comprehensive software infrastructure and various services required to build up
robust web application for PC, as well as mobile devices.

 ASP.Net works on top of the HTTP protocol and uses the HTTP commands and policies
to set a browser-to-server two-way communication and cooperation.

 ASP.Net is a part of Microsoft .Net platform. ASP.Net applications are complied codes,
written using the extensible and reusable components or objects present in .Net
framework. These codes can use the entire hierarchy of classes in .Net framework.

 The ASP.Net application codes could be written in either of the following languages:

 C#
 Visual Basic .Net
 Jscript
 J#

 ASP.Net is used to produce interactive, data-driven web applications over the internet.
It consists of a large number of controls like text boxes, buttons and labels for
assembling, configuring and manipulating code to create HTML pages.

ASP.Net Web Forms Model
 ASP.Net web forms extend the event-driven model of interaction to the web applications. The browser

submits a web form to the web server and the server returns a full markup page or HTML page in
response.

 All client side user activities are forwarded to the server for stateful processing. The server processes
the output of the client actions and triggers the reactions.

 Now, HTTP is a stateless protocol. ASP.Net framework helps in storing the information regarding the
state of the application, which consists of:

 Page state

 Session state

 The page state is the state of the client, i.e., the content of various input fields in the web form. The
session state is the collective obtained from various pages the user visited and worked with, i.e., the
overall session state. To clear the concept, let us take up an example of a shopping cart as follows.

 User adds items to a shopping cart. Items are selected from a page, say the items page, and the total
collected items and price are shown in a different page, say the cart page. Only HTTP cannot keep
track of all the information coming from various pages. ASP.Net session state and server side
infrastructure keeps track of the information collected globally over a session.

 The ASP.Net runtime carries the page state to and from the server across page requests while
generating the ASP.Net runtime codes and incorporates the state of the server side components in
hidden fields.

 This way the server becomes aware of the overall application state and operates in a two-tiered
connected way.

ASP.Net Component Model:
 The ASP.Net component model provides various building blocks of ASP.Net

pages. Basically it is an object model, which describes:
 Server side counterparts of almost all HTML elements or tags, like

<form> and <input>.
 Server controls, which help in developing complex user-interface

for example the Calendar control or the Gridview control.

 ASP.Net is a technology, which works on the .Net framework that contains all
web-related functionalities. The .Net framework is made of an object-oriented
hierarchy. An ASP.Net web application is made of pages. When a user requests
an ASP.Net page, the IIS delegates the processing of the page to the ASP.Net
runtime system.

 The ASP.Net runtime transforms the .aspx page into an instance of a class,
which inherits from the base class Page of the .Net framework. Therefore, each
ASP.Net page is an object and all its components i.e., the server-side controls
are also objects.

Components of .Net Framework

 Before going to the next session on Visual
Studio.Net, let us look at the various components
of the .Net framework 3.5. The following table
describes the components of the .Net framework
3.5 and the job they perform:

Visual Studio IDE
 ASP.Net provides an abstraction layer on top of HTTP

on which the web applications are built. It provides
high-level entities like classes and components within
an object-oriented paradigm.

 The key development tool for building ASP.Net
applications and front ends is Visual Studio. In these
tutorials, we will work on Visual Studio 2008.

 Visual Studio is an integrated development
environment for writing, compiling and debugging the
code. It provides a complete set of development tools
for building ASP.Net web applications, web services,
desktop applications and mobile applications.

Visual Studio IDE
 When you start a new web site, ASP.NET provides the starting

folders and files for the site, including two files for the first web
form of the site.

 The file named Default.aspx contains the HTML and asp code
that defines the form, and the file named Default.aspx.cs (for C#
coding) or the file named Default.aspx.vb (for vb coding)
contains the code in the language you have chosen and this code
is responsible for the form's works.

 The primary window in the Visual Studio IDE is the Web Forms
Designer window. Other supporting windows are the Toolbox,
the Solution Explorer, and the Properties window. You use the
designer to design a web form, to add code to the control on the
form so that the form works according to your need, you use the
code editor.

Ways to work with views and windows

The following are the ways to work with different
windows:
 To change the Web Forms Designer from one view to

another, click on the Design or source button.
 To close a window, click on the close button on the

upper right corner and to redisplay, select it from the
View menu.

 To hide a window, click on its Auto Hide button; the
window changes into a tab, to redisplay again click on
the Auto Hide button again.

 To size a wind just drag it.

Projects and Solutions
 A typical ASP.Net application consists of many items: the web content files (.aspx), source files

(e.g., the .cs files), assemblies (e.g., the .dll files and .exe files), data source files (e.g., .mdb
files), references, icons, user controls and miscellaneous other files and folders. All these files
that make up the website are contained in a Solution.

 When a new website is created VB2008 automatically creates the solution and displays it in the
solution explorer.

 Solutions may contain one or more projects. A project contains content files, source files, and
other files like data sources and image files. Generally the contents of a project are compiled
into an assembly as an executable file (.exe) or a dynamic link library (.dll) file.

 Typically a project contains the following content files:
 Page file (.aspx)
 User control (.ascx)
 Web service (.asmx)
 Master page (.master)
 Site map (.sitemap)
 Website configuration file (.config)

Building and Running a Project:

 The application is run by selecting either Start or
Start Without Debugging from the Debug menu,
or by pressing F5 or Ctrl-F5. The program is built
i.e. the .exe or the .dll files are generated by
selecting a command from the Build menu.

ASP.Net Page Life Cycle
Following are the different stages of an ASP.Net page:
 Page request . when ASP.Net gets a page request, it decides whether to parse and compile the

page or there would be a cached version of the page; accordingly the response is sent
 Starting of page life cycle . at this stage, the Request and Response objects are set. If the

request is an old request or post back, the IsPostBack property of the page is set to true. The
UICulture property of the page is also set.

 Page initialization . at this stage, the controls on the page are assigned unique ID by setting
the UniqueID property and themes are applied. For a new request postback data is loaded and
the control properties are restored to the view-state values.

 Page load . at this stage, control properties are set using the view state and control state values.
 Validation . Validate method of the validation control is called and if it runs successfully, the

IsValid property of the page is set to true.
 Postback event handling . if the request is a postback (old request), the related event handler

is called.
 Page rendering . at this stage, view state for the page and all controls are saved. The page calls

the Render method for each control and the output of rendering is written to the
OutputStream class of the Page's Response property.

 Unload . the rendered page is sent to the client and page properties, such as Response and
Request are unloaded and all cleanup done.

Hibernate Framework
Created by Rapelli

Objective

To understand hibernate framework and how to
code using hibernate framework

2

Limitations of JDBC

■

■

■

■

■

Boiler plate code
Paradigm mismatch

Developer needs to know database table
Inheritance can not be implemented
Association can not be implemented

3

What Is The Solution

● Hibernate

■ Latest Open Source Persistence
technology

■ Maps Java classes with database tables

■ Reduced development time for data
queries & retrieval of data

How Data Can Be Stored Using Java?

5

public class Employee
{
private int id;
private String

first_name;
private String

last_name;
private int salary;

public Employee() {}

public Employee(String fname,
String lname, int salary)
{
this.first_name = fname;
this.last_name = lname;
this.salary = salary;
}
public int getId()
{ return id; }

public String getFirstName()
{ return first_name; }
public String getLastName() { return
last_name; }

public int getSalary() { return salary;}}

How data can be stored using RDBMS?

6

■ create table EMPLOYEE (id INT NOT NULL
auto_increment, first_name VARCHAR(20)
default NULL, last_name VARCHAR(20)
default NULL, salary INT default NULL,
PRIMARY KEY (id));

MVC design pattern

7

■

■

This design pattern helps us develop loosely
coupled application by segregating various
concerns into different layers.

MVC design pattern enforces the application to
be divided into three layers, Model, View and
Controller.

What Problems May Occur?

8

Mismatch Description

Granularity Sometimes you will have an object model which has more
classes than the number of corresponding tables in the
database

Inheritance RDBMSs do not define anything similar to Inheritance which
is a natural paradigm in object-oriented programming
languages

Identity A RDBMS defines exactly one notion of 'sameness': the
primary key. Java, however, defines both object identity (a==b)
and object equality (a.equals(b))

Associations Object-oriented languages represent associations using
object references where as am RDBMS represents an
association as a foreign key column

Navigation The ways you access objects in Java and in a RDBMS are
fundamentally different

Solution

9

●

●

ORM
The Object-Relational Mapping (ORM) is the
solution to handle all the mismatches

● A programming technique for converting
data between relational databases and
object oriented programming languages such as
Java, C# etc

■

10

A persistent framework is an ORM service that
stores and retrieves objects into a relational
database

■

■

■

■

■

■

Enterprise JavaBeans Entity Beans
Java Data Objects
Castor
TopLink
Spring DAO
Hibernate

Java ORM Frameworks

Hibernate

11

● Hibernate is an Object-Relational Mapping(ORM) solution
for JAVA and it raised as an open source persistent
framework

● It is a powerful, high performance Object-

●

Relational Persistence and Query service for any
Java Application
Hibernate maps Java classes to database tables
and from Java data types to SQL data types and
relieve the developer from 95% of common data
persistence related programming tasks

What Hibernate does?

12

■

13

■

■

■

■

■

■

■

Hibernate takes care of mapping Java classes to database tables using
XML files and without writing any line of code

Provides simple APIs for storing and retrieving Java objects directly to and
from the database

If there is change in Database or in any table then the only need to change
XML file properties

Abstract away the unfamiliar SQL types and provide us to work around
familiar Java Objects

Hibernate does not require an application server to operate

Manipulates Complex associations of objects of your database

Minimize database access with smart fetching strategies

Provides Simple querying of data

Hibernate Advantages

Hibernate Architecture (high level)

14

Hibernate Architecture (details)

15

Configuration Object

16

■ The Configuration object is
Hibernate object created

the first
in any

Hibernate application
■

■

Created only once during application
initialization
It represents a configuration or properties file
required by the Hibernate

●

17

■

■

Configuration object is used to create a
SessionFactory object

It configures Hibernate for the application using
the supplied configuration file
A Session object is instantiated using
SessionFactory

SessionFactory Object

Session Object

18

■

■

A Session is used to get a physical connection with
a database
This is lightweight object

■ Needs to be instantiated each time an
interaction is needed with the database

■ saved and retrieved

■

Persistent objects are
through a Session object
These are not thread safe

Transaction Object

19

■ A Transaction represents a unit of
work with the database and most of
the RDBMS supports transaction

■

functionality
Transactions in Hibernate are
handled by an underlying transaction
manager and transaction (from JDBC or
JTA)

Query Object

20

■ Query objects use SQL or Hibernate
Query Language (HQL) string to retrieve data
from the database and create objects

■ A Query instance is used to bind query
parameters, limit thenumber of results
returned by the query, and finally to
execute the query

Criteria Object

21

■ object are used to
and execute object

Criteria
create
oriented criteria queries to
retrieve objects

■ Its an alternative to HQL &
SQL

2
1

What properties in .cfg.xml file ?

■

■

■

■

hibernate.dialect
This property makes Hibernate generate the
appropriate SQL for the chosen database
hibernate.connection.driver_class
The JDBC driver class
hibernate.connection.url
The JDBC URL to the database instance
hibernate.connection.username
The database username

2
2

Hibernate.cfg.xml file

<hibernate-configuration>
<session-factory>
<property
name="hbm2ddl.auto">update</property>
<property
name="dialect">org.hibernate.dialect.MySQL
Dialect</property> <property
name="connection.url">jdbc:mysql://localho
st:3306/ADJT</property>
<property
name="connection.username">root</proper

2
3

Example pojo.hbm.xml file

<hibernate-mapping>
<class
name="com.javatpoint.mypackage.Employee"
table="emp">
<id name="id">
<generator class="assigned"></generator>
</id>
<property name="firstName"></property>
<property name="lastName"></property>

</class>

Generator

25

● Types of Generators
◆

◆

◆

◆

◆

◆

◆

Assigned
Increment
Sequence
Identity
Foreign
hillo native

Assigned

26

Supported by all DBs
■

■

Default generator type
Developer has to specify which PK value is
assigned to object i.e. which column will be
used as PK

<id name=“prodId” column=“pid”>
<generator/>
</id>

Increment

27

■

■

Supported by all DBs
Generates the id for new record by using
formula as max of id value in database plus 1

2
7

Sequence

■

■

■

■

Not supported by MySQL
First ensures if DB supports this.
If yes then while inserting a record,
hibernate gets next value from the
sequence.
If programmer has created sequence that can
be used as
<id name=“productId” column=“pid”>

<generator>
<param

2
8

hilo

■

■

■

This generator is database independent
for the first record, the id value will be
inserted as 1
actually this hibernate stores the count of id
values generated in a column of separated
table, with name “hibernate_unique_key” by
default with the column name “next_hi”
<id name="productId" column="pid">

<generator class=”hilo”>
<param name="table">your table

name</param>

Identity

30

■

■

Not supported by Oracle
Id value is generated by database & not
hibernate

Foreign

31

■ Used in one-to-one mapping

3
1

What is Component Mapping ?

■ A Component mapping is a mapping for a
class having a reference to another class as a
member variable
e.g. Employee has address

create table EMPLOYEE (id INT NOT NULL
auto_increment, first_name VARCHAR(20)
default NULL, last_name VARCHAR(20)
default NULL, salary INT default NULL,
street_name VARCHAR(40) default NULL,
city_name VARCHAR(40) default NULL,
state_name VARCHAR(40) default NULL,
zipcode VARCHAR(10) default NULL

What is Component Mapping ?

33

■

■

we will map the dependent object as a
component.
Mapping:
<component name="address"
class="com.Address">
<property name="city"></property>
<property name="country"></property>
<property name="pincode"></property>
</component>

Inheritance Mapping

34

■

■

■

Strategy)

There are three types of Inhertance Mapping
Table per concrete class

Table per subThcerelaare thsreestypes of inheritance mapping in hibernate

1. Table per concrete class with unions

Table per clas2.sTablehpericelassrhiaerarrchcy(ShingleyTa(bleSStraitengy)gle table
3. Table per subclass

3
4

Table per class Hierarchy

■

■

Single Table can be mapped to a class hierarchy
Mapping as

<discriminator column="type"
type="string"></discriminator>

<property name="name"></property>
<subclass name="mypackage.Regular_Employee"

discriminator-value="reg_emp">
<property name="salary"></property>
<property name="bonus"></property>
</subclass>

3
5

Table per class Hierarchy

3
6

Table per class Hierarchy

■

■

■

Advantages of Single Table per class
hierarchy
Simplest to implement.
Only one table to deal with.
Performance wise better than all strategies

to bebecause no joins or sub-selects need
performed.

Disadvantages:
■ Most of the column of table are nullable so the

NOT NULL constraint cannot be applied.

Table per concrete class

38

■

■

■

It creates seperate table per concrete class
Limitation – Redudancy code

Mapping is
<union-subclass

name="mypackage.Contract_Employee"
table="contemp122">

<property name="pay_per_hour"></property>
<property
name="contract_duration"></property> </union-
subclass>

Table per concrete class

39

Table per subclass

■

■

Here,we have seperate Parent table hoding
common properties & subclass table points
to it using Foreign Key.

Mapping as
<joined-subclass

name="mypackage.Contract_Employee"
table="contemp123">
<key column="eid"></key>
<property name="pay_per_hour"></property>

39

<property

Table per subclass

41

Hibernate Association
(Collection Mapping)

42

■

■

In hibernate, Hibernate Association is the concept
where we putting relationship between two
entities.

Using hibernate we can put the following
relationship;

■

■

■

One-to-One
One-to-Many
Many-to-Many

One to One mapping

43

One to One mapping

44

■

■

Attributes used in pojo.hbm.xml file
name: the name of the property

■ class (defaults to the property type determined
by reflection): the name of the associated class

■ cascade (optional): specifies which operations
should be cascaded from the parent object to
the associated object

One to Many Mapping

■ A relationship in which each record in one
table is linked to multiple records in
another table

■ E.g. One department can have many
employees

45

One to Many Example

46

■

■

Employee.hbm.xml
Dept.hbm.xml
............
<set name="employees" cascade="all" >
<key column="deptId" />
<one-to-many class="com.Employee" />
</set>
.........

Many to Many Mapping

■

47

Many to Many Mapping

48

■ A Many-to-Many mapping can be
implemented using a Set java collection that
does not contain any duplicate element

■

■

E.g. many employees involved in many
meetings
Many meetings having many employees

HQL

• Hibernate Query Language (HQL) is an object-
oriented query language, similar to SQL, but
instead of operating on tables and columns, HQL
works with persistent objects and their properties.

• HQL queries are translated by Hibernate into
conventional SQL queries which in turns perform
action on database.

Query Interface

• It is an object oriented representation of Hibernate
Query.
Query hql=session.createQuery(“from table”);

• Query Interface methods:
1.public int executeUpdate() is used to execute the update
or delete query.
2.public Query setFirstResult(int rowno) specifies the row
number from where record will be retrieved.

Query Interface

3.public List list() returns the result
relation(table) as a list.

of the

4.public Query setMaxResult(int rowno)
specifies the no. of records to be retrieved from the relation
(table).
5.public Query setParameter(int position, Object value)
it sets the value to the JDBC style query parameter.
6.public Query setParameter(String name, Object
value) it sets the value to a named query parameter.

Syntax

Query query=session.createQuery("from Em p");
//here persistent class name is Emp List
list=query.list();

Clauses in HQL are:

• From Clause: It’s same as select clause in SQL, from
Employee is same as select * from Employee.
We can also create alias such as from Employee
emp or from Employee as emp.

• Join Clause: HQL supports inner join, left outer join, right
outer join and full join. For example, select e.name, a.city
from Employee e INNER JOIN e.address.

• Aggregate Functions: HQL supports commonly used
aggregate functions such as count(*), count(distinct x),
min(), max(), avg() and sum().

Clauses in HQL are:

• AS Clause
AS clause can be used to assign aliases to the
classes in your HQL queries
String hql = "FROM Employee AS E";

• SELECT Clause
The SELECT clause provides more control over the
result set then the from clause.
String hql = "SELECT E.firstName FROM
Employee E";

HQL :

• Expressions: HQL supports arithmetic expressions (+, -, *,
/), binary comparison operators (=, >=, <=,
<>, !=, like), logical operations (and, or, not) etc.

• HQL also supports order by and group by clauses.

• HQL also supports sub-queries just like SQL queries.

• HQL supports DDL, DML and executing store
procedures too.

HQL update query

Transaction tx=session.beginTransaction(); Query
q=session.createQuery("update User set
name=:n where id=:i");
q.setParameter("n",“Kumar");
q.setParameter("i",100);

int status=q.executeUpdate();
System.out.println(status);
tx.commit();

HQL delete query

Query query=session.createQuery("delete fr om
Emp where id=100");

//specifying class name (Emp)
not tablename query.executeUpdate();

Hibernate - Criteria Queries

• Hibernate provides alternate ways of manipulating objects
and in turn data available in RDBMS tables.

• The Hibernate Session interface provides
createCriteria() method which can be used to create a
Criteria object that returns instances of the persistence
object's class when your application executes a criteria
query.
Example :
▪
▪

Criteria cr = session.createCriteria(Employee.class); List
results = cr.list();

Restrictions with Criteria

• You can use add() method available for Criteria
object to add restriction for a criteria query.

• Example to add a restriction to return the
records with salary is equal to 2000:

• Criteria cr =
session.createCriteria(Employee.class);
cr.add(Restrictions.eq("salary", 2000));
List results = cr.list();

Criteria examples

Criteria cr = session.createCriteria(Employee.class);
// To get records having salary more than 2000
cr.add(Restrictions.gt("salary", 2000));

// To get records having salary less than 2000
cr.add(Restrictions.lt("salary", 2000));

// To get records having fistName starting with zara
cr.add(Restrictions.like("firstName", "zara%"));

// To get records having salary in between 1000 and 2000
cr.add(Restrictions.between("salary", 1000, 2000));

// To check if the given property is empty
cr.add(Restrictions.isEmpty("salary"));

HQL vs Criteria

• HQL is to perform both select and non-select
operations on the data, but Criteria is only for
selecting the data, we cannot perform non-select operations
using criteria

• HQL is suitable for executing Static Queries, where as
Criteria is suitable for executing Dynamic Queries

• Criteria used to take more time to execute then HQL
• With Criteria we are safe with SQL Injection because of its

dynamic query generation but in HQL as your queries are
either fixed or parametrized, there is no safe from SQL
Injection.

HQL vs Criteria

HQL Criteria

It performs both select and non
select operation

It performs only select operation

It is suitable for executing static
queries

It is suitable for executing
dynamic queries

it is faster it is slower than HQL

Non safe SQL injection safe SQL injection

Caching In Hibernate

63

■

■

■

Caching is a mechanism to enhance the
performance of a system.

It is a buffer memorythat lies between the
application and the database.

Cache memory stores recently used data items
in order to reduce the number of database
hits as much as possible.

Caching...

64

caching

65

■

Hibernate provide two level cache
The first-level cache - Session

■ The second-level cache -SessionFactory-level
cache

The first-level cache - Session (Earlier hibernate already provide this level of cache)

The second-level cache -Session-factory-level cache

First Level cache

66

■

■

■

The first level cache type is the session
cache.

The session cache caches object within the
current session but this is not enough for
long level i.e. session factory scope.

It is by default enable & can't disable
mannualy.

Second level cache

6
6Swarm Cache■

■

■

■

■

■

■

It is optional
The second level cache can be configured on a

per-class and per-collection basis and mainly
responsible for caching objects across sessions.

Any third-party cache can be used with Hibernate.
Different vendors have provided the

implementation of Second Level Cache.
EH Cache
OS Cache

6
7

Second level cache

■

■

■

It is by default disable & can enable by;
<!-- Enable the second-level cache -->
<property

name="cache.use_second_level_cache">tru
e</property>

<property
name="cache.provider_class">org.hibernate.
cache.EhCacheProvider</property>

6
8

Second level cache

■ Cache usage functionality:
read-only: caching will work for read only

operation.
nonstrict-read-write: caching will work for

read and write but one at a time.
read-write: caching will work for read and

write, can be used simultaneously.
transactional: caching will work for
transaction.

Ex: <cache usage="read-only" />

6
9

Second level cache

■ Every cache provider is not compatible with every
concurrency strategy.

Strategy/Provi
der

Read-only Nonstrictread-
write

Read-write Transactional

EHCache X X X

OSCache X X X

SwarmCache X X

JBoss Cache X X

Name of Faculty . Mr Santosh Kulkarni

Subject Data Mining

Programme:- BCAIII Sem V

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of

Management Career Development and

Research.
156-B Railway Lines Solapur.

Affilated PAH Solapur University

Name of Faculty :-Mr.Santosh kulkarni

Subject : Data Mining

Course :- BCA III Sem V

Data and Information

A data warehouse is constructed by integrating data

from multiple heterogeneous sources. It supports analytical

reporting, structured and/or ad hoc queries and decision making.

This tutorial adopts a step-by-step approach to explain all the

necessary concepts of data warehousing

Difference between operational database vs data warehouse

• The Operational Database is the source of information for

the data warehouse. It includes detailed information used to

run the day to day operations of the business. The data

frequently changes as updates are made and reflect the

current value of the last transactions.

• Operational Database Management Systems also called as

OLTP (Online Transactions Processing Databases), are

used to manage dynamic data in real-time.

• Data Warehouse Systems serve users or knowledge

workers in the purpose of data analysis and decision-

making. Such systems can organize and present information

in specific formats to accommodate the diverse needs of

various users. These systems are called as Online-Analytical

Processing (OLAP) Systems.

Characterstics of Data Warehouse

• Subject-oriented –

A data warehouse is always a subject oriented as it delivers

information about a theme instead of organization’s current

operations. It can be achieved on specific theme. That

means the data warehousing process is proposed to handle

with a specific theme which is more defined. These themes

can be sales, distributions, marketing etc.

A data warehouse never put emphasis only current

operations. Instead, it focuses on demonstrating and

analysis of data to make various decision. It also delivers an

easy and precise demonstration around particular theme by

eliminating data which is not required to make the decisions.

• Integrated –

It is somewhere same as subject orientation which is made

in a reliable format. Integration means founding a shared

entity to scale the all similar data from the different

databases. The data also required to be resided into various

data warehouse in shared and generally granted manner.

A data warehouse is built by integrating data from various

sources of data such that a mainframe and a relational

database. In addition, it must have reliable naming

conventions, format and codes. Integration of data

warehouse benefits in effective analysis of data. Reliability in

naming conventions, column scaling, encoding structure etc.

should be confirmed. Integration of data warehouse handles

various subject related warehouse.

• Time-Variant –

In this data is maintained via different intervals of time such

as weekly, monthly, or annually etc. It founds various time

limit which are structured between the large datasets and

are held in online transaction process (OLTP). The time

limits for data warehouse is wide-ranged than that of

operational systems. The data resided in data warehouse is

predictable with a specific interval of time and delivers

information from the historical perspective. It comprises

elements of time explicitly or implicitly. Another feature of

time-variance is that once data is stored in the data

warehouse then it cannot be modified, alter, or updated.

• Non-Volatile –

As the name defines the data resided in data warehouse is

permanent. It also means that data is not erased or deleted

when new data is inserted. It includes the mammoth quantity

of data that is inserted into modification between the

selected quantity on logical business. It evaluates the

analysis within the technologies of warehouse.

Architectural Types

1. 1) Centralised Data Warehouse

2. Independent Data Marts

3. Federated

4. Hub and Spoke

5. Data Mart Bus

1) Centralised Data Warehouse

Centralized Data Warehouse. A Centralized

Data Warehouse is a data warehousing implementation

wherein a single data warehouse serves the needs of several

separate business unites simultaneously using a

single data model that spans the needs of multiple business

divisions

2) Independent Data Marts

This Architect type evolves in oraganisation where the

organisational units develop their own data marts for their own

specific purposes

3) Federated Data Marts

Some Organisations get into data warehousing with an existing

decision support structures in the form of operational systems

,extracted data sets,primitive data marts

4) Hub and Spoke

This is the similar centralised data warehouse architecure

Dependent data marts obtain data from centralised data

warehouse

The centralised data warehouse forms the hub to feed data to

the data marts on the spokes

5) Data Mart Bus

In this architecture begin with analysing requirements for a

specific business objects

Such as orders,billings,shipments

Build the data mart using business dimensions

Components or Building Blocks of Data Warehouse

Architecture is the proper arrangement of the elements. We build a data warehouse with software and

hardware components. To suit the requirements of our organizations, we arrange these building we

may want to boost up another part with extra tools and services. All of these depends on our

circumstances.

The figure shows the essential elements of a typical warehouse. We see the Source Data component

shows on the left. The Data staging element serves as the next building block. In the middle, we see
the Data Storage component that handles the data warehouses data. This element not only stores and

manages the data; it also keeps track of data using the metadata repository. The Information Delivery

component shows on the right consists of all the different ways of making the information from the

data warehouses available to the users.

Source Data Component

Source data coming into the data warehouses may be grouped into four broad categories:

Production Data: This type of data comes from the different operating systems of the enterprise.
Based on the data requirements in the data warehouse, we choose segments of the data from the

various operational modes.

Internal Data: In each organization, the client keeps their "private" spreadsheets, reports, customer

profiles, and sometimes even department databases. This is the internal data, part of which could be

useful in a data warehouse.

Archived Data: Operational systems are mainly intended to run the current business. In every
operational system, we periodically take the old data and store it in achieved files.

External Data: Most executives depend on information from external sources for a large percentage

of the information they use. They use statistics associating to their industry produced by the external

department.

Data Staging Component

After we have been extracted data from various operational systems and external sources, we have to

prepare the files for storing in the data warehouse. The extracted data coming from several different

sources need to be changed, converted, and made ready in a format that is relevant to be saved for

querying and analysis.

We will now discuss the three primary functions that take place in the staging area.

1)Data Extraction: This method has to deal with numerous data sources. We have to employ the

appropriate techniques for each data source.

2)Data Transformation: As we know, data for a data warehouse comes from many different

sources. If data extraction for a data warehouse posture big challenges, data transformation present

even significant challenges. We perform several individual tasks as part of data transformation.

First, we clean the data extracted from each source. Cleaning may be the correction of misspellings or

may deal with providing default values for missing data elements, or elimination of duplicates when

we bring in the same data from various source systems.

Standardization of data components forms a large part of data transformation. Data transformation
contains many forms of combining pieces of data from different sources. We combine data from single

source record or related data parts from many source records.

On the other hand, data transformation also contains purging source data that is not useful and

separating outsource records into new combinations. Sorting and merging of data take place on a

large scale in the data staging area. When the data transformation function ends, we have a collection

of integrated data that is cleaned, standardized, and summarized.

3)Data Loading: Two distinct categories of tasks form data loading functions. When we complete

the structure and construction of the data warehouse and go live for the first time, we do the initial
loading of the information into the data warehouse storage. The initial load moves high volumes of

data using up a substantial amount of time.

Data Storage Components

Data storage for the data warehousing is a split repository. The data repositories for the operational

systems generally include only the current data. Also, these data repositories include the data

structured in highly normalized for fast and efficient processing.

Information Delivery Component

The information delivery element is used to enable the process of subscribing for data warehouse files

and having it transferred to one or more destinations according to some customer-specified scheduling

algorithm.

Metadata Component

Metadata in a data warehouse is equal to the data dictionary or the data catalog in a database

management system. In the data dictionary, we keep the data about the logical data structures, the

data about the records and addresses, the information about the indexes, and so on.

Data Marts

It includes a subset of corporate-wide data that is of value to a specific group of users. The scope is

confined to particular selected subjects. Data in a data warehouse should be a fairly current, but not

mainly up to the minute, although development in the data warehouse industry has made standard

and incremental data dumps more achievable. Data marts are lower than data warehouses and

usually contain organization. The current trends in data warehousing are to developed a data

warehouse with several smaller related data marts for particular kinds of queries and reports.

Management and Control Component

The management and control elements coordinate the services and functions within the data

warehouse. These components control the data transformation and the data transfer into the data

warehouse storage. On the other hand, it moderates the data delivery to the clients. Its work with the

database management systems and authorizes data to be correctly saved in the repositories. It

monitors the movement of information into the staging method and from there into the data

warehouses storage itself.

Why we need a separate Data Warehouse?

Data Warehouse queries are complex because they involve the computation of large groups of data at
summarized levels.

It may require the use of distinctive data organization, access, and implementation method based on
multidimensional views.

Performing OLAP queries in operational database degrade the performance of functional tasks.

Data Warehouse is used for analysis and decision making in which extensive database is required,
including historical data, which operational database does not typically maintain.

The separation of an operational database from data warehouses is based on the different structures
and uses of data in these systems.

Because the two systems provide different functionalities and require different kinds of data, it is
necessary to maintain separate databases.

Difference between Database and Data Warehouse

Database Data Warehouse

1. It is used for Online Transactional Processing (OLTP) but

can be used for other objectives such as Data Warehousing.

This records the data from the clients for history.

1. It is used for Online Analytical Processing

(OLAP). This reads the historical information for

the customers for business decisions.

2. The tables and joins are complicated since they are

normalized for RDBMS. This is done to reduce redundant

files and to save storage space.

2. The tables and joins are accessible since they

are de-normalized. This is done to minimize the

response time for analytical queries.

3. Data is dynamic

3. Data is largely static

4. Entity: Relational modeling procedures are used for

RDBMS database design.

4. Data: Modeling approach are used for the

Data Warehouse design.

5. Optimized for write operations.

5. Optimized for read operations.

6. Performance is low for analysis queries.

6. High performance for analytical queries.

7. The database is the place where the data is taken as a

base and managed to get available fast and efficient access.

7. Data Warehouse is the place where the

application data is handled for analysis and

reporting objectives.

Extraction transformation load

• ETL is a process in Data Warehousing and it stands for

Extract, Transform and Load. It is a process in which

an ETL tool extracts the data from various data source

systems, transforms it in the staging area and then finally,

loads it into the Data Warehouse system.

Schema Design

• Design a schema logically based on business

requirements. This can be defined as building a logical

model. This design step will play an important part in how

the data warehouse is developed.

Star Schema

In computing, the star schema is the simplest style of

data mart schema and is the approach most widely used to

develop data warehouses and dimensional data marts.

The star schema consists of one or more fact tables

referencing any number of dimension tables.

• It consists of the orders fact table shown in the middle of the

schema diagram

• The fact table are the four dimension tables of

• Customer,salesperson, order date and product

• The star schema structure is a structure that can be easily

understood and they can comfortably work.

• The fact table mainly consists of business facts and foreign

keys that refer to primary keys in the dimension tables.

A dimension table consists mainly of descriptive attributes

that are textual fields. ... On the contrary, a fact

table contains a foreign key, measurements, and

degenerated dimensions

Snow Flake Schema

• In data warehousing, snowflaking is a form of dimensional

modeling in which dimensions are stored in multiple related

dimension tables. A snowflake schema is a variation of the

star schema. ... A star schema stores all attributes for a

dimension into one denormalized (“flattened”) table.

• In computing, a snowflake schema is a logical arrangement

of tables in a multidimensional database such that the entity

relationship diagram resembles a snowflake shape.

The snowflake schema is represented by centralized fact

tables which are connected to multiple dimensions..

Fact Consultation Schema

• A Fact constellation means two or more fact tables

sharing one or more dimensions. It is also called

Galaxy schema. ... Example: A fact constellation

schema is shown in the figure below. This schema defines

two fact tables, sales, and shipping.

• Fact Table. ... A fact table is found at the center of a star

schema or snowflake schema surrounded by

dimension tables. A fact table consists of facts of a

particular business process e.g., sales revenue by month by

product. Facts are also known as measurements or metrics.

Non Additive Measures

• fact table is the one which consists of the measurements,

metrics or facts of business process. These measurable

facts are used to know the business value and to forecast

the future business. The different types of facts are

explained in detail below:

• Additive measures: These are those specific class of fact

measures which can be aggregated across all dimension

and their hierarchy. Example: one may tend to add sales

across all quarters to avail the yearly sales。

• Semi-Additive measures: These are those specific class of

fact measures which can be aggregated across all

dimension and their hierarchy except the time dimension.

Example: Daily balances fact can be summed up through the

customers dimension but not through the time dimension.

• Non-additive measures: These are those specific class of

fact measures which cannot be aggregated across all/any

dimension and their hierarchy. Example: Facts which have

percentages, ratios calculated.

OLAP Server Architecture

ROLAP

• Relational online analytical processing (ROLAP) is a form of

online analytical processing (OLAP) that performs dynamic

multidimensional analysis of data stored in a relational

database rather than in a multidimensional database (which

is usually considered the OLAP standard).

• OLAP stores all data, including aggregations, in the source

relational database. ... ROLAP's advantages include better

scalability, enabling it to handle huge amounts of data, and

the ability to efficiently manage both numeric and textual

data

MOLAP

• Multidimensional online analytical processing

(MOLAP) is a kind of online analytical processing (OLAP)

that, like relational online analytical processing (ROLAP),

uses a multidimensional data model to analyze data

• OLAP tools enable users to analyze different dimensions of

multidimensional data. For example, it provides time series

and trend analysis views. OLAP often is used in data

mining. The chief component of OLAP is the OLAP server,

which sits between a client and a database management

systems (DBMS).

HOLAP

• HOLAP (Hybrid Online Analytical Processing) is a

combination of ROLAP (Relational OLAP) and MOLAP

(Multidimensional OLAP). HOLAP allows storing part of the

data in a MOLAP store and another part of the data in a

ROLAP store. HOLAP can use varying combinations of

ROLAP and OLAP technology.

Hybrid OLAP is a mode of storage that uses a combination of

multidimensional data structures and relational database tables

for storing multidimensional data. The analysis services stores the

aggregations for a HOLAP partition in a multidimensional

structure and the facts are stored in relational database

Thank You !!!

Any Queries
9420779969/kulkarnisantosh52

73

@gmail.com

 Mrs. Snehal Pathak 22

Name of Faculty . Mr Santosh Kulkarni

Subject Data Mining

Programme:- BCAIII Sem V

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of

Management Career Development and

Research.
156-B Railway Lines Solapur.

Affilated PAH Solapur University

Data Mining

• Introduction to data mining

• data mining is defined as a process used to extract usable data from a larger set of any

raw data. It implies analysing data patterns in large batches of data using one or more

software. ... Data mining is also known as Knowledge Discovery in Data (KDD).

Difference between Data warehouse and Data Mining

• A data warehouse is built to support management functions whereas data mining is used to

extract useful information and patterns from data. Data warehousing is the process of

compiling information into a data warehouse.

KDD

• The long form of KDD is Knowledge Discovery in databases

• The term Knowledge Discovery in Databases, or KDD for short, refers to the broad process of

finding knowledge in data, and emphasizes the "high-level" application of particular data

mining methods.

• The KDD process is an iterative process that consists in the selection,

cleaning and transformation of data coming not only from databases but also from other

heterogeneous sources, such as plain text, data warehouses, images, sound, etc., aimed to

apply to them data mining algorithms in order to discover valid, novel,

Data Mining Tasks

• Now a days, data mining is used in almost all the places where a large amount of data is

stored and processed. For example, banks typically use ‘data mining’ to find out their

prospective customers who could be interested in credit cards, personal loans or insurances

as well. Since banks have the transaction details and detailed profiles of their customers,

they analyze all this data and try to find out patterns which help them predict that certain

customers could be interested in personal loans etc.

• Main Purpose of Data Mining

Basically, the information gathered from Data Mining helps to predict hidden patterns,

future trends and behaviors and allowing businesses to take decisions.

• Technically, data mining is the computational process of analyzing data from different

perspective, dimensions, angles and categorizing/summarizing it into meaningful

information.

Data Mining can be applied to any type of data e.g. Data Warehouses, Transactional

Databases, Relational Databases, Multimedia Databases, Spatial Databases, Time-series

Databases, World Wide Web.

• Data Mining as a whole process

The whole process of Data Mining comprises of three main phases:

1. Data Pre-processing – Data cleaning, integration, selection and transformation takes place

2. Data Extraction – Occurrence of exact data mining

3. Data Evaluation and Presentation – Analyzing and presenting results

• Applications of Data Mining

1. Financial Analysis

2. Biological Analysis

3. Scientific Analysis

4. Intrusion Detection

5. Fraud Detection

6. Research Analysis

• Real life example of Data Mining – Market Basket Analysis

Market Basket Analysis is a technique which gives the careful study of purchases done by a

customer in a super market. The concept is basically applied to identify the items that are

bought together by a customer. Say, if a person buys bread, what are the chances that

he/she will also purchase butter. This analysis helps in promoting offers and deals by the

companies. The same is done with the help of data mining.

•

Steps Involved in Data Preprocessing:
1. Data Cleaning:

The data can have many irrelevant and missing parts. To handle this part, data
cleaning is done. It involves handling of missing data, noisy data etc.
 (a). Missing Data:

This situation arises when some data is missing in the data. It can be handled in
various ways.
Some of them are:

1. Ignore the tuples:

This approach is suitable only when the dataset we have is quite large and
multiple values are missing within a tuple.

2. Fill the Missing values:

There are various ways to do this task. You can choose to fill the missing
values manually, by attribute mean or the most probable value.

 (b). Noisy Data:

Noisy data is a meaningless data that can’t be interpreted by machines.It can
be generated due to faulty data collection, data entry errors etc. It can be
handled in following ways :

1. Binning Method:

This method works on sorted data in order to smooth it. The whole data is
divided into segments of equal size and then various methods are
performed to complete the task. Each segmented is handled separately.
One can replace all data in a segment by its mean or boundary values can
be used to complete the task.

2. Regression:

Here data can be made smooth by fitting it to a regression function.The
regression used may be linear (having one independent variable) or
multiple (having multiple independent variables).

3. Clustering:

This approach groups the similar data in a cluster. The outliers may be
undetected or it will fall outside the clusters.

2. Data Transformation:

This step is taken in order to transform the data in appropriate forms suitable for
mining process. This involves following ways:

1. Normalization:

It is done in order to scale the data values in a specified range (-1.0 to 1.0 or
0.0 to 1.0)

2. Attribute Selection:

In this strategy, new attributes are constructed from the given set of attributes to
help the mining process.

3. Discretization:

This is done to replace the raw values of numeric attribute by interval levels or
conceptual levels.

4. Concept Hierarchy Generation:

Here attributes are converted from level to higher level in hierarchy. For
Example-The attribute “city” can be converted to “country”.

3. Data Reduction:

Since data mining is a technique that is used to handle huge amount of data. While
working with huge volume of data, analysis became harder in such cases. In order to
get rid of this, we uses data reduction technique. It aims to increase the storage
efficiency and reduce data storage and analysis costs.

The various steps to data reduction are:

1. Data Cube Aggregation:
Aggregation operation is applied to data for the construction of the data cube.

2. Attribute Subset Selection:

The highly relevant attributes should be used, rest all can be discarded. For
performing attribute selection, one can use level of significance and p- value of
the attribute.the attribute having p-value greater than significance level can be
discarded.

3. Numerosity Reduction:

This enable to store the model of data instead of whole data, for example:
Regression Models.

4. Dimensionality Reduction:

This reduce the size of data by encoding mechanisms.It can be lossy or
lossless. If after reconstruction from compressed data, original data can be
retrieved, such reduction are called lossless reduction else it is called lossy
reduction. The two effective methods of dimensionality reduction are:Wavelet
transforms and PCA (Principal Componenet Analysis).

Summerisation

• Summarization is a key data mining concept which in- volves techniques for finding a

compact description of a dataset. Simple summarization methods such as tabulat- ing the

mean and standard deviations are often applied for

exploratory data analysis, data visualization and automated report generation.

Binaryzation

• Binarization is the process of transforming data features of any entity into vectors of binary

numbers to make classifier algorithms more efficient. In a simple example, transforming an

image's gray-scale from the 0-255 spectrum to a 0-1 spectrum is binarization.

Thank You !!!

Any Queries
9420779969/kulkarnisantosh5

273

@gmail.com

 Mrs. Snehal Pathak 7

Subject-Advance Networking

Design Issues in Network Layer

Network layer is majorly focused on getting packets from the source to the destination,

routing error handling and congestion control.

Before learning about design issues in the network layer, let’s learn about it’s various

functions.

• Addressing:

Maintains the address at the frame header of both source and destination and performs

addressing to detect various devices in network.

•

• Packeting:

This is performed by Internet Protocol. The network layer converts the packets from

its upper layer.

•

• Routing:

It is the most important functionality. The network layer chooses the most relevant

and best path for the data transmission from source to destination.

•

• Inter-networking:

It works to deliver a logical connection across multiple devices.

•

Network layer design issues:
The network layer comes with some design issues they are described as follows:

1. Store and Forward packet switching:

The host sends the packet to the nearest router. This packet is stored there until it has

fully arrived once the link is fully processed by verifying the checksum then it is

forwarded to the next router till it reaches the destination. This mechanism is called

“Store and Forward packet switching.”

2. Services provided to Transport Layer:

Through the network/transport layer interface, the network layer transfers it’s services to

the transport layer. These services are described below.

But before providing these services to the transfer layer following goals must be kept in

mind :-

• Offering services must not depend on router technology.

• The transport layer needs to be protected from the type, number and topology of the

available router.

• The network addresses for the transport layer should use uniform numbering pattern

also at LAN and WAN connections.

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.geeksforgeeks.org/introduction-of-classful-ip-addressing/
https://www.geeksforgeeks.org/types-of-routing/
https://www.geeksforgeeks.org/transport-layer-responsibilities/

Based on the connections there are 2 types of services provided :

• Connectionless – The routing and insertion of packets into subnet is done

individually. No added setup is required.

• Connection-Oriented – Subnet must offer reliable service and all the packets must be

transmitted over a single route.

3. Implementation of Connectionless Service:

Packet are termed as “datagrams” and corresponding subnet as “datagram subnets”.

When the message size that has to be transmitted is 4 times the size of the packet, then

the network layer divides into 4 packets and transmits each packet to router via. a few

protocol.Each data packet has destination address and is routed independently

irrespective of the packets.

4. Implementation of Connection Oriented service:

To use a connection-oriented service, first we establishes a connection, use it and then

release it. In connection-oriented services, the data packets are delivered to the receiver in

the same order in which they have been sent by the sender.

It can be done in either two ways :

• Circuit Switched Connection – A dedicated physical path or a circuit is established

between the communicating nodes and then data stream is transferred.

• Virtual Circuit Switched Connection – The data stream is transferred over a packet

switched network, in such a way that it seems to the user that there is a dedicated path

from the sender to the receiver. A virtual path is established here. While, other

connections may also be using the same path.

Routing Protocols are the set of defined rules used by the routers to
communicate between source & destination. They do not move the
information to the source to a destination, but only update the routing table
that contains the information.

Network Router protocols helps you to specify way routers communicate with
each other. It allows the network to select routes between any two nodes on a
computer network.

What You Will Learn

Types of Routing Protocols
There are mainly two types of Network Routing Protocols

• Static
• Dynamic

https://www.geeksforgeeks.org/difference-between-connection-oriented-and-connection-less-services/

Routing Protocols

Static Routing Protocols
Static routing protocols are used when an administrator manually assigns the
path from source to the destination network. It offers more security to the
network.

Advantages

• No overhead on router CPU.
• No unused bandwidth between links.
• Only the administrator is able to add routes

Disadvantages

• The administrator must know how each router is connected.
• Not an ideal option for large networks as it is time intensive.
• Whenever link fails all the network goes down which is not feasible in

small networks.

Dynamic Routing Protocols
Dynamic routing protocols are another important type of routing protocol. It
helps routers to add information to their routing tables from connected routers
automatically. These types of protocols also send out topology updates
whenever the network changes’ topological structure.

Advantage:

• Easier to configure even on larger networks.
• It will be dynamically able to choose a different route in case if a link

goes down.
• It helps you to do load balancing between multiple links.

Disadvantage:

• Updates are shared between routers, so it consumes bandwidth.
• Routing protocols put an additional load on router CPU or RAM.

Distance Vector Routing Protocol (DVR)
Distance Vector Protocols advertise their routing table to every directly
connected neighbor at specific time intervals using lots of bandwidths and
slow converge.

In the Distance Vector routing protocol, when a route becomes unavailable, all
routing tables need to be updated with new information.

Advantages:

• Updates of the network are exchanged periodically, and it is always
broadcast.

• This protocol always trusts route on routing information received from
neighbor routers.

Disadvantages:

• As the routing information are exchanged periodically, unnecessary
traffic is generated, which consumes available bandwidth.

Internet Routing Protocols:
The following are types of protocols which help data packets find their way
across the Internet:

Routing Information Protocol (RIP)
RIP is used in both LAN and WAN Networks. It also runs on the Application
layer of the OSI model. The full form of RIP is the Routing Information
Protocol. Two versions of RIP are

1. RIPv1
2. RIPv2

The original version or RIPv1 helps you determine network paths based on
the IP destination and the hop count journey. RIPv1 also interacts with the
network by broadcasting its IP table to all routers connected with the network.

RIPv2 is a little more sophisticated as it sends its routing table on to a
multicast address.

Interior Gateway Protocol (IGP)
IGRP is a subtype of the distance-vector interior gateway protocol developed
by CISCO. It is introduced to overcome RIP limitations. The metrics used are
load, bandwidth, delay, MTU, and reliability. It is widely used by routers to
exchange routing data within an autonomous system.

This type of routing protocol is the best for larger network size as it broadcasts
after every 90 seconds, and it has a maximum hop count of 255. It helps you
to sustain larger networks compared to RIP. IGRP is also widely used as it is
resistant to routing loop because it updates itself automatically when route
changes occur within the specific network. It is also given an option to load
balance traffic across equal or unequal metric cost paths.

Link State Routing Protocol
Link State Protocols take a unique approach to search the best routing path.
In this protocol, the route is calculated based on the speed of the path to the
destination and the cost of resources.

Routing protocol tables:

Link state routing protocol maintains below given three tables:

• Neighbor table: This table contains information about the neighbors of
the router only. For example, adjacency has been formed.

• Topology table: This table stores information about the whole topology.
For example, it contains both the best and backup routes to a particular
advertised network.

• Routing table: This type of table contains all the best routes to the
advertised network.

Advantages:

• This protocol maintains separate tables for both the best route and the
backup routes, so it has more knowledge of the inter-network than any
other distance vector routing protocol.

• Concept of triggered updates are used, so it does not consume any
unnecessary bandwidth.

• Partial updates will be triggered when there is a topology change, so it
does not need to update where the whole routing table is exchanged.

Exterior Gateway Protocol (EGP)
EGP is a protocol used to exchange data between gateway hosts that are
neighbors with each other within autonomous systems. This routing protocol
offers a forum for routers to share information across different domains. The
full form for EGP is the Exterior Gateway Protocol. EGP protocol includes
known routers, network addresses, route costs, or neighboring devices.

Enhanced Interior Gateway Routing Protocol

(EIGRP)
EIGRP is a hybrid routing protocol that provides routing protocols, distance
vector, and link-state routing protocols. The full form routing protocol EIGRP is
Enhanced Interior Gateway Routing Protocol. It will route the same protocols
that IGRP routes using the same composite metrics as IGRP, which helps the
network select the best path destination.

Open Shortest Path First (OSPF)
Open Shortest Path First (OSPF) protocol is a link-state IGP tailor-made for IP
networks using the Shortest Path First (SPF) method.

OSPF routing allows you to maintain databases detailing information about
the surrounding topology of the network. It also uses the Dijkstra algorithm
(Shortest path algorithm) to recalculate network paths when its topology
changes. This protocol is also very secure, as it can authenticate protocol
changes to keep data secure.

Distance Vector Link State

Distance Vector protocol sends the entire routing table.
Link State protocol sends only link-state

 information.

It is susceptible to routing loops. It is less susceptible to routing loops.

Updates are sometimes sent using broadcast.
Uses only multicast method for routing

 updates.

It is simple to configure.
It is hard to configure this routing

protocol.

Does not know network topology. Know the entire topology.

Example RIP, IGRP. Examples: OSPF IS-IS.

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

Routing protocols:

Intermediate System-to-Intermediate System (IS-

IS)
ISIS CISCO routing protocol is used on the Internet to send IP routing
information. It consists of a range of components, including end systems,
intermediate systems, areas, and domains.

The full form of ISIS is Intermediate System-to-Intermediate System. Under
the IS-IS protocol, routers are organized into groups called areas. Multiple
areas are grouped to make form a domain.

Border Gateway Protocol (BGP)
BGP is the last routing protocol of the Internet, which is classified as a DPVP
(distance path vector protocol). The full form of BGP is the Border Gateway
Protocol.

This type of routing protocol sends updated router table data when changes
are made. Therefore, there is no auto-discovery of topology changes, which
means that the user needs to configure BGP manually.

What is the purpose of Routing Protocols?
Routing protocols are required for the following reasons:

• Allows optimal path selection
• Offers loop-free routing
• Fast convergence
• Minimize update traffic
• Easy to configure
• Adapts to changes
• Scales to a large size
• Compatible with existing hosts and routers
• Supports variable length

Congestion Control techniques in
Computer Networks
Congestion control refers to the techniques used to control or prevent congestion.

Congestion control techniques can be broadly classified into two categories:

Open Loop Congestion Control

Open loop congestion control policies are applied to prevent congestion before it

happens. The congestion control is handled either by the source or the destination.

Policies adopted by open loop congestion control –

1. Retransmission Policy :

It is the policy in which retransmission of the packets are taken care of. If the sender

feels that a sent packet is lost or corrupted, the packet needs to be retransmitted. This

transmission may increase the congestion in the network.

To prevent congestion, retransmission timers must be designed to prevent congestion

and also able to optimize efficiency.

2. Window Policy :

The type of window at the sender’s side may also affect the congestion. Several

packets in the Go-back-n window are re-sent, although some packets may be received

successfully at the receiver side. This duplication may increase the congestion in the

network and make it worse.

Therefore, Selective repeat window should be adopted as it sends the specific packet

that may have been lost.

3. Discarding Policy :

A good discarding policy adopted by the routers is that the routers may prevent

congestion and at the same time partially discard the corrupted or less sensitive

packages and also be able to maintain the quality of a message.

In case of audio file transmission, routers can discard less sensitive packets to prevent

congestion and also maintain the quality of the audio file.

4. Acknowledgment Policy :

Since acknowledgements are also the part of the load in the network, the

acknowledgment policy imposed by the receiver may also affect congestion. Several

approaches can be used to prevent congestion related to acknowledgment.

The receiver should send acknowledgement for N packets rather than sending

acknowledgement for a single packet. The receiver should send an acknowledgment

only if it has to send a packet or a timer expires.

5. Admission Policy :

In admission policy a mechanism should be used to prevent congestion. Switches in a

flow should first check the resource requirement of a network flow before

transmitting it further. If there is a chance of a congestion or there is a congestion in

the network, router should deny establishing a virtual network connection to prevent

further congestion.

All the above policies are adopted to prevent congestion before it happens in the

network.

Closed Loop Congestion Control

Closed loop congestion control techniques are used to treat or alleviate congestion after it

happens. Several techniques are used by different protocols; some of them are:

1. Backpressure :

Backpressure is a technique in which a congested node stops receiving packets from

upstream node. This may cause the upstream node or nodes to become congested and

reject receiving data from above nodes. Backpressure is a node-to-node congestion

control technique that propagate in the opposite direction of data flow. The backpressure

technique can be applied only to virtual circuit where each node has information of its

above upstream node.

 In above diagram the 3rd node is congested and stops receiving packets as a result

2nd node may be get congested due to slowing down of the output data flow. Similarly

1st node may get congested and inform the source to slow down.

2. Choke Packet Technique :

Choke packet technique is applicable to both virtual networks as well as datagram

subnets. A choke packet is a packet sent by a node to the source to inform it of

congestion. Each router monitors its resources and the utilization at each of its output

lines. Whenever the resource utilization exceeds the threshold value which is set by the

administrator, the router directly sends a choke packet to the source giving it a feedback

to reduce the traffic. The intermediate nodes through which the packets has traveled are

not warned about congestion.

3. Implicit Signaling :

In implicit signaling, there is no communication between the congested nodes and the

source. The source guesses that there is congestion in a network. For example when

sender sends several packets and there is no acknowledgment for a while, one assumption

is that there is a congestion.

4. Explicit Signaling :

In explicit signaling, if a node experiences congestion it can explicitly sends a packet to

the source or destination to inform about congestion. The difference between choke

packet and explicit signaling is that the signal is included in the packets that carry data

rather than creating a different packet as in case of choke packet technique.

Explicit signaling can occur in either forward or backward direction.

• Forward Signaling : In forward signaling, a signal is sent in the direction of the

congestion. The destination is warned about congestion. The receiver in this case

adopt policies to prevent further congestion.

• Backward Signaling : In backward signaling, a signal is sent in the opposite

direction of the congestion. The source is warned about congestion and it needs to

slow down.

Virtual Circuit

Virtual Circuit is the computer network providing connection-oriented service.
It is a connection-oriented network. In virtual circuit resource are reserve for the
time interval of data transmission between two nodes. This network is a highly
reliable medium of transfer. Virtual circuits are costly to implement.

Working of Virtual Circuit:
• In the first step a medium is set up between the two end nodes.
• Resources are reserved for the transmission of packets.
• Then a signal is sent to sender to tell the medium is set up and transmission

can be started.
• It ensures the transmission of all packets.
• A global header is used in the first packet of the connection.

• Whenever data is to be transmitted a new connection is set up.
Congestion Control in Virtual Circuit:
Once the congestion is detected in virtual circuit network, closed-loop
techniques is used. There are different approaches in this technique:
• No new connection –

No new connections are established when the congestion is detected. This
approach is used in telephone networks where no new calls are established
when the exchange is overloaded.

• Participation of congested router invalid –
Another approach to control congestion is allow all new connections but
route these new connections in such a way that congested router is not part
of this route.

• Negotiation –
To negotiate different parameters between sender and receiver of the
network, when the connection is established. During the set up time, host
specifies the shape and volume of the traffic, quality of service and other
parameters.

Advantages of Virtual Circuit:
1. Packets are delivered to the receiver in the same order sent by the sender.
2. Virtual circuit is a reliable network circuit.
3. There is no need for overhead in each packet.
4. Single global packet overhead is used in virtual circuit.
Disadvantages of Virtual Circuit:
1. Virtual circuit is costly to implement.
2. It provides only connection-oriented service.
3. Always a new connection set up is required for transmission.

Linux Operating System

Linux is one of popular version of UNIX operating System. It is open
source as its source code is freely available. It is free to use. Linux was

designed considering UNIX compatibility. Its functionality list is quite

similar to that of UNIX.

Components of Linux System
Linux Operating System has primarily three components

• Kernel − Kernel is the core part of Linux. It is responsible for all

major activities of this operating system. It consists of various
modules and it interacts directly with the underlying hardware.

Kernel provides the required abstraction to hide low level hardware

details to system or application programs.

• System Library − System libraries are special functions or
programs using which application programs or system utilities

accesses Kernel's features. These libraries implement most of the
functionalities of the operating system and do not requires kernel

module's code access rights.

• System Utility − System Utility programs are responsible to do

specialized, individual level tasks.

Kernel Mode vs User Mode
Kernel component code executes in a special privileged mode

called kernel mode with full access to all resources of the computer.
This code represents a single process, executes in single address space

and do not require any context switch and hence is very efficient and
fast. Kernel runs each processes and provides system services to

processes, provides protected access to hardware to processes.

Support code which is not required to run in kernel mode is in System
Library. User programs and other system programs works in User

Mode which has no access to system hardware and kernel code. User
programs/ utilities use System libraries to access Kernel functions to get

system's low level tasks.

Basic Features
Following are some of the important features of Linux Operating System.

• Portable − Portability means software can works on different types of
hardware in same way. Linux kernel and application programs supports

their installation on any kind of hardware platform.

• Open Source − Linux source code is freely available and it is community
based development project. Multiple teams work in collaboration to

enhance the capability of Linux operating system and it is continuously
evolving.

• Multi-User − Linux is a multiuser system means multiple users can
access system resources like memory/ ram/ application programs at
same time.

• Multiprogramming − Linux is a multiprogramming system means
multiple applications can run at same time.

• Hierarchical File System − Linux provides a standard file structure in
which system files/ user files are arranged.

• Shell − Linux provides a special interpreter program which can be used

to execute commands of the operating system. It can be used to do
various types of operations, call application programs. etc.

• Security − Linux provides user security using authentication features like
password protection/ controlled access to specific files/ encryption of

data.

Architecture
The following illustration shows the architecture of a Linux system −

The architecture of a Linux System consists of the following layers −

• Hardware layer − Hardware consists of all peripheral devices (RAM/
HDD/ CPU etc).

• Kernel − It is the core component of Operating System, interacts directly

with hardware, provides low level services to upper layer components.

• Shell − An interface to kernel, hiding complexity of kernel's functions

from users. The shell takes commands from the user and executes
kernel's functions.

• Utilities − Utility programs that provide the user most of the

functionalities of an operating systems.

Linux is one of popular version of UNIX operating System. It is open
source as its source code is freely available. It is free to use. Linux was

designed considering UNIX compatibility. Its functionality list is quite

similar to that of UNIX.

Components of Linux System
Linux Operating System has primarily three components

• Kernel − Kernel is the core part of Linux. It is responsible for all major
activities of this operating system. It consists of various modules and it
interacts directly with the underlying hardware. Kernel provides the

required abstraction to hide low level hardware details to system or
application programs.

• System Library − System libraries are special functions or programs
using which application programs or system utilities accesses Kernel's

features. These libraries implement most of the functionalities of the
operating system and do not requires kernel module's code access rights.

• System Utility − System Utility programs are responsible to do
specialized, individual level tasks.

Kernel Mode vs User Mode
Kernel component code executes in a special privileged mode
called kernel mode with full access to all resources of the computer.

This code represents a single process, executes in single address space

and do not require any context switch and hence is very efficient and
fast. Kernel runs each processes and provides system services to

processes, provides protected access to hardware to processes.

Support code which is not required to run in kernel mode is in System

Library. User programs and other system programs works in User
Mode which has no access to system hardware and kernel code. User

programs/ utilities use System libraries to access Kernel functions to get

system's low level tasks.

Basic Features
Following are some of the important features of Linux Operating System.

• Portable − Portability means software can works on different types
of hardware in same way. Linux kernel and application programs

supports their installation on any kind of hardware platform.

• Open Source − Linux source code is freely available and it is
community based development project. Multiple teams work in

collaboration to enhance the capability of Linux operating system

and it is continuously evolving.

• Multi-User − Linux is a multiuser system means multiple users can
access system resources like memory/ ram/ application programs

at same time.

• Multiprogramming − Linux is a multiprogramming system means

multiple applications can run at same time.

• Hierarchical File System − Linux provides a standard file

structure in which system files/ user files are arranged.

• Shell − Linux provides a special interpreter program which can be

used to execute commands of the operating system. It can be used

to do various types of operations, call application programs. etc.

• Security − Linux provides user security using authentication
features like password protection/ controlled access to specific

files/ encryption of data.

Architecture
The following illustration shows the architecture

of a Linux system −

The architecture of a Linux System consists of
the following layers −

• Hardware layer − Hardware consists of all peripheral devices

(RAM/ HDD/ CPU etc).

• Kernel − It is the core component of Operating System, interacts
directly with hardware, provides low level services to upper layer

components.

• Shell − An interface to kernel, hiding complexity of kernel's

functions from users. The shell takes commands from the user and

executes kernel's functions.

• Utilities − Utility programs that provide the user most of the

functionalities of an operating systems.

History-

In this article, you will learn what Linux is, where Linux came from, what a Linux
distribution is and some of the reasons that Linux is favored for certain applications
and projects over other operating systems.

First and foremost, Linux is an operating system. An operating system is simply a
collection of software that manages hardware resources and provides an
environment where applications can run. The operating system allows applications to
store information, send documents to printers, interact with users and other things.

Linux is also a kernel. Typically, when the term “Linux” is used, it refers to the Linux
operating system as a whole. However, it can refer to just the Linux kernel as well.
The Linux kernel is the core or the heart of the operating system. It’s the layer that
sits between the hardware and applications. Said another way, it’s the intermediary
between software and hardware. However, to have a useful operating system, you
need other components in addition to the kernel. These components can include
system libraries, graphical user interfaces, email utilities, web browsers and other
programs.

Linus Torvalds created Linux when he was a student at the University of Helsinki
studying computer science. In early 1991 he purchased an IBM-compatible personal
computer that came with the MS-DOS operating system. Linus wasn’t satisfied with
MS-DOS and wanted to use a UNIX operating system like he was accustomed to at
the University. When he set out to obtain a copy of UNIX for his personal use, he
found that the least expensive UNIX he could buy was about $5,000 USD. Driven by
the desire to run a UNIX-like operating system on his personal computer, he set out
to create Linux. Linus and over 100 developers worked on Linux over the next
couple of years and in March of 1994, version 1.0 of the Linux kernel was released.

Linux is open source software. This means that anyone can use, copy, study and
change the software in any way they chose so long as the source code is openly
shared with others. To date, thousands of people have made improvements to
Linux. With Linux being free and open source software, it has led to the rise of Linux
distributions. In every case, the source code is free, but in some cases, the
distribution is not free – the binaries, the compiled code is not free. For example, you
have to pay a license in order to run Red Hat Enterprise Linux. However, Red Hat
releases their source code for anyone to download.

Again, Linux is not a UNIX-derivative. It was written from scratch. However, many of
the commands that are found in Linux are also found in UNIX. If you have any
experience on UNIX systems, you’re going to feel right at home on a Linux system.

A Linux distribution is the Linux kernel and a collection of software that together,
create an operating system. Each distribution has its own goals and areas of focus.
Your choice of distribution will depend on what you’re trying to accomplish. There
are distributions that are commercial. These commercial Linux distributions are
backed by corporations and you can buy support from them. There are non-
commercial Linux distributions. These are maintained by a community of volunteers.
You have Linux distributions that are designed for server use, others that are
designed for desktop use, some that are focus on research and science. There are
others that are focused on multimedia production. There are literally hundreds of
Linux distributions.

DistroWatch.com is a great website to learn about all the available Linux
distributions. “Distro” is short for distribution. Here are some popular Linux
distributions:

• RedHat Enterprise Linux (RHEL)
• Fedora
• Ubuntu
• Debian
• SuSE Linux Enterprise Server (SLES)
• OpenSuSE
• Linux Mint

Again, there are a hundred of Linux distros. These are just a few of the
most popular Linux distributions. To get an idea of exactly what’s

available, go to DistroWatch.com.

So what are some of the reasons you would want to run Linux?

Linux runs on many hardware platforms from dedicated networking

devices to phones to personal computers and even super computers.
Proprietary UNIX operating systems typically only run on their hardware

from their company. For example, HPUX only runs on HP servers, AIX
only runs on IBM servers. Linux can run on HP, IBM and other servers.

Linux was developed on PC hardware using Intel processors. Over time,

Linux has been ported to more hardware platforms than any other

operating system.

The small footprint of Linux allows it to run on older hardware or on

embedded systems. Also, Linux is known for being stable, reliable and
secure. This makes it a great source for servers that need to continuously

run without downtime.

Linux has traditionally been used for server applications. Linux can be

used to host websites, act as file servers and even run database software.

Linux doesn’t have to be used as a server though. Many people find Linux
to be a good everyday operating system that they use on their personal

desktops.

Linux is free. Not only is the source code freely available, but you can run
Linux on your hardware without having to be pay a licensing fee in many

cases. However, if your business depends on servers that are running
Linux, having a commercial Linux distribution which you pay for and

having someone that can provide support can be well worth your while.

Linux is typically not as costly as the proprietary UNIX operating systems.

Linux is also free in the sense that you can use it for any purpose and you
can modify it to fit your needs if you so desire. There are also many free

software applications that run on Linux. Many of these free applications

were written with Linux in mind.

Let’s recap what we’ve gone over in this article. First, we learned that

Linux is an operating system. When someone says the word “Linux”

without a qualifier, more than likely they are talking about the entire
operating system. However, Linux is also a kernel. When people speak of

the Linux kernel, they are typically specific and say “the Linux kernel.”

Linux, being the operating system, is the intermediary between hardware
and software. Linux distributions are implementations of Linux. Each

Linux distribution has a different goal and a slightly different focus. Your
choice of distribution will be driven by the goal you are trying to

accomplish.

•

In this chapter, we will discuss in detail about file management in Unix.

All data in Unix is organized into files. All files are organized into
directories. These directories are organized into a tree-like structure

called the filesystem.

When you work with Unix, one way or another, you spend most of your

time working with files. This tutorial will help you understand how to
create and remove files, copy and rename them, create links to them,

etc.

In Linux, there are so many choices, and this includes the desktop environments
and window managers. The most popular desktop environments in Linux

are GNOME, Unity, Cinnamon, MATE, KDE, Xfce, and LXDE. All of them offer
sophisticated point-and-click graphical user interfaces (GUI) which are on par

with the desktop environments found in Windows and Mac OS X. When you ask
different people which of these are the best, you will likely get many different
answers. So which is the best? Well….. it is largely a matter of opinion, and the

http://en.wikipedia.org/wiki/Desktop_environment
http://www.gnome.org/
http://unity.ubuntu.com/
http://cinnamon.linuxmint.com/
http://mate-desktop.org/
http://www.kde.org/
http://www.xfce.org/
http://lxde.org/
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Windows
http://en.wikipedia.org/wiki/Mac_osx

capabilities of your computer hardware can also be important in deciding. For
example, users with older computers will be better served to choose Xfce or

especially LXDE, while users with newer hardware can get more desktop effects
by choosing KDE, Cinnamon, or GNOME. Another consideration when choosing a

desktop environment is your preference for customizing it. If you like to have a
lot of options to customize and tweak your desktop, then KDE will by default
give you the greatest flexibility to do this. Xfce comes next, and then LXDE,

while Unity and the default GNOME 3.x shell offer relatively few options in the
way of desktop customization. Personally, I like all of them, and if you have the

time and are a bit adventurous, then I recommend you try each of the major
desktop environments described below, as well as others such
as Enlightenment and Razor-qtand decide which of them works best for you.

GNOME, Unity, Cinnamon, MATE, KDE, Xfce, LXDE, Enlightenment, and Razor-qt
are all excellent and are definitely worth consideration.

A BRIEF DESCRIPTION OF
GNOME, UNITY, CINNAMON,

MATE, KDE, XFCE, LXDE,

GNOME
 The GNOME (GNU Network Object Model Environment) has been redesigned

with the most recent GNOME 3.x and is a wide departure from the traditional
GNOME 2.x desktop. The newly released GNOME 3.x with its GNOME Shell user

interface is a drastic change from the “classic” GNOME 2.x shell. While the
GNOME 3.x shell is fairly intuitive, for someone who is accustomed to GNOME
2.x, or any other desktop environment for that matter, there will be a

considerable amount of adjustment. In the GNOME 3.x shell, there is only
one panel located at the top of the desktop, and there is no longer a traditional

menu. To open programs, users can either press the Windows key, or they can
click on “Activities” found on the left side of the panel. This gives the options of a
program launcher that appears on the left side of the desktop, an “Applications”

option found on the upper left part of the desktop (which is the closest thing to a
menu), or they can search for programs using the search box on the upper right

of the desktop. Additionally, when clicking on “Activities,” a desktop switcher
appears on the right side of the desktop. Another change involves the buttons on
the windows; in GNOME 2.x, and practically every other desktop environment or

window manager, there are at least three buttons found at the top of each
window: one to exit the window, one to maximize the window, and one to

minimize the window. However, in the default GNOME 3.x shell, there is only one
button that is used to exit the window, which really takes some getting used to.
If you want your laptop or desktop to look and behave like a cell phone or tablet,

then the GNOME 3.x shell might be for you. Overall, the GNOME 3.x shell is a
very simple, clean, and visually pleasing desktop. Debian, and Fedora are major

distros which use some form of GNOME in their main editions.

http://www.enlightenment.org/
http://razor-qt.org/
http://www.gnome.org/
http://www.gnu.org/
http://en.wikipedia.org/wiki/Gnome-panel
http://www.debian.org/
http://fedoraproject.org/

It should also be mentioned that GNOME has a wealth of applications which are
designed for its desktop, but they can also be used in the other desktop

environments as well; click here to see a list of them [1]. Following are a few
applications and components of GNOME:

Window Manager: Mutter (GNOME 3.x shell)
File Manager: Nautilus
Office Suite: GNOME Office (which includes AbiWord and Gnumeric)

Music Player: Rhythmbox
Video Player: Totem

CD/DVD Burner: Brasero
Games: GnomeGames
Widget Toolkit: GTK+

Recommended System Requirements for the GNOME 3.x shell in its default
mode

 Required RAM 768 MB

 Required CPU 400 MHz

http://en.wikipedia.org/wiki/List_of_GNOME_applications
http://en.wikipedia.org/wiki/Mutter_%28window_manager%29
http://live.gnome.org/Nautilus
http://live.gnome.org/GnomeOffice
http://www.abisource.com/
http://projects.gnome.org/gnumeric/
http://projects.gnome.org/rhythmbox/
http://projects.gnome.org/totem/
http://projects.gnome.org/brasero/
http://live.gnome.org/GnomeGames/
http://www.gtk.org/

KDE
In many ways, KDE (K Desktop Environment) in its default configuration is very

similar in appearance to Microsoft Windows and Windows users will likely feel
very much at home when using it. KDE is arguably the most powerful, versatile,
smoothly integrated, and visually pleasing of all the Linux desktops and has

more point-and-click customization options and “eye candy” than any of the
various GNOMEs, Xfce, LXDE or any other Linux desktop. With its Plasma

Workspaces, users can easily add a variety of widgets to the desktop. While KDE
is the most polished in appearance when compared to other Linux desktops, it
can be quite resource-hungry with its many desktop effects. However, when the

desktop effects are turned off, KDE is fairly energy efficient. Typically, KDE
requires less CPU resources than Ubuntu’s Unity and less RAM than the GNOME

3.x shell. OpenSUSE, PCLinuxOS, SolydXK, Mageia, and Chakra are some major
Linux distros running KDE in their main editions. Kubuntu is the KDE version of
Ubuntu. In summary, KDE is an outstanding desktop environment that is most

definitely worth consideration. Pictured above is KDE PCLinuxOS.
Like GNOME, KDE includes a large number of applications which are designed to

be used in its desktop, many of which have a name that begins with the letter
“K.” For example, Konqueror is a web browser and file manager, and KStars is a

desktop planetarium. Also like the GNOME applications, the KDE applications can
be used in other desktop environments. You can click here to see a list of KDE
applications [2]. Following are a few applications and components of KDE:

Window Manager: KWin
File Manager: Dolphin

Office Suite: KOffice
Music Player: Amarok
Video Player: Dragon Player

CD/DVD Burner: K3b
Terminal Emulator: Konsole

Games: The KDE Games Center
Education: KDE Edu
Widget Toolkit: Qt

Recommended System Requirements for KDE

Required RAM 615 MB

Required CPU 1 GHz

One option in newer versions of KDE is to run it in the “Search and Launch”

mode, which in some ways is similar in appearance to the GNOME 3.x shell and
to Ubuntu’s Unity. This mode with its large icons and search can be used with a

touchscreen, and is great for smaller devices such as netbooks and tablets.
While the Search and Launch mode is an option in KDE, it is not the default like

it is in the GNOME 3.x shell and in Unity. The Search and Launch mode is easily
activated or deactivated by clicking on the “Show Activity Manager” button found

http://www.kde.org/
http://en.wikipedia.org/wiki/KDE_Plasma_Workspaces
http://en.wikipedia.org/wiki/KDE_Plasma_Workspaces
http://en.wikipedia.org/wiki/Widget_engine
http://www.opensuse.org/en/
http://pclinuxos.com/
http://solydxk.com/
http://www.mageia.org/en/
http://chakra-linux.org/
http://www.kubuntu.org/
http://www.konqueror.org/
http://edu.kde.org/kstars/
http://en.wikipedia.org/wiki/List_of_KDE_applications
http://userbase.kde.org/KWin
http://dolphin.kde.org/
http://www.koffice.org/
http://amarok.kde.org/
http://kde.org/applications/multimedia/dragonplayer/
http://www.k3b.org/
http://konsole.kde.org/
http://games.kde.org/
http://edu.kde.org/
http://qt-project.org/
http://en.wikipedia.org/wiki/Netbook
http://en.wikipedia.org/wiki/Tablet_computer

on the desktop panel, next to the “Application Launcher Menu.” Click on the
picture above to see a larger screenshot of the KDE 4.7 Search and Launch

mode.

XFCE
is not same Less resource-hungry than GNOME or KDE, Xfce is a great

choice for older computers and it is still a full-fledged desktop
environment that offers a great deal to the user. In my opinion, Xfce

provides a nice balance between functionality and conservation of system
resources, while still having a beautiful desktop. In its default

appearance, Xfce very much resembles Mac OS X with its dock-like panel
found at the bottom of the desktop. Users can drag their favorite

applications from the menu (found on the left side of the upper panel)
and place them on the bottom dock/panel in a similar manner as can be

done in Mac OS X. Just like GNOME 2.x and KDE, Xfce may easily be

customized to more closely resemble Windows, or to be configured

http://www.xfce.org/

otherwise as desired. SolydX is the Xfce version of SolydXK.
Also, Xubuntu is the Xfce version of Ubuntu, and Mythbuntu has Xfce as

its desktop. VectorLinux uses Xfce as its default desktop, and many other
Linux distros offer Xfce versions as well. In many ways, Xfce looks and

acts much like GNOME 2.x, and for those who like the GNOME 2.x desktop
and are not completely satisfied with the changes in the GNOME 3.x shell

or Unity, Xfce could be a great fit. Pictured above is Xfce in Xubuntu
16.04 LTS.

Following are a few applications and components of Xfce:
Window Manager: Xfwm

File Manager: Thunar
Media Player: Parole

CD/DVD Burner: Xfburn
Task Manager: Xfce Task Manager

Widget Toolkit: GTK+

Recommended System Requirements for Xfce

Required RAM 192 MB

Required CPU 300 MHz

http://wiki.xfce.org/minimum_requirements [3]

http://solydxk.com/
http://www.xubuntu.org/
http://www.mythbuntu.org/
http://vectorlinux.com/
http://www.xfce.org/projects/xfwm4/
http://thunar.xfce.org/
http://goodies.xfce.org/projects/applications/parole
http://goodies.xfce.org/projects/applications/xfburn
http://goodies.xfce.org/projects/applications/xfce4-taskmanager
http://wiki.xfce.org/minimum_requirements

Linux File Hierarchy Structure

The Linux File Hierarchy Structure or the Filesystem Hierarchy Standard

(FHS) defines the directory structure and directory contents in Unix-like

operating systems.It is maintained by the Linux Foundation.

▪ In the FHS, all files and directories appear under the root directory /,

even if they are stored on different physical or virtual devices.
▪ Some of these directories only exist on a particular system if certain

subsystems, such as the X Window System, are installed.

▪ Most of these directories exist in all UNIX operating systems and are
generally used in much the same way; however, the descriptions here

are those used specifically for the FHS, and are not considered
authoritative for platforms other than Linux.

1. / (Root) : Primary hierarchy root and root directory of the entire file

system hierarchy.
▪ Every single file and directory starts from the root directory

▪ Only root user has the right to write under this directory
▪ /root is root user’s home directory, whichas /

2. /bin : Essential command binaries that need to be available in single user mode; for all users, e.g., cat, ls, cp.

▪ Contains binary executables
▪ Common linux commands you need to use in single-user modes are

located under this directory.
▪ Commands used by all the users of the system are located here e.g.

ps, ls, ping, grep, cp

3. /boot : Boot loader files, e.g., kernels, initrd.
▪ Kernel initrd, vmlinux, grub files are located under /boot

▪ Example: initrd.img-2.6.32-24-generic, vmlinuz-2.6.32-24-generic

4. /dev : Essential device files, e.g., /dev/null.

▪ These include terminal devices, usb, or any device attached to the system.

▪ Example: /dev/tty1, /dev/usbmon0

5. /etc : Host-specific system-wide configuration files.

▪ Contains configuration files required by all programs.

▪ This also contains startup and shutdown shell scripts used to start/stop individual programs.

▪ Example: /etc/resolv.conf, /etc/logrotate.conf.

6. /home : Users’ home directories, containing saved files, personal settings, etc.

▪ Home directories for all users to store their personal files.

▪ example: /home/kishlay, /home/kv

5 Most Frequently Used Open Source Shells for Linux

The shell is much more than just a command interpretor, it is also a programming language of

its own with complete programming language constructs such as conditional execution,

loops, variables, functions and many more.

That is why the Unix/GNU Linux shell is more powerful compared to the Windows shell.

In this article, we shall take a look at some of the top most used open source shells on

Unix/GNU Linux.

1. Bash Shell

Bash stands for Bourne Again Shell and it is the default shell on many Linux distributions

today. It is also a sh-compatible shell and offers practical improvements over sh for

programming and interactive use which includes:
▪ Command line editing
▪ Job Control
▪ Unlimited size command history
▪ Shell Functions and Aliases
▪ Unlimited size Indexed arrays
▪ Integer arithmetic in any base from two to sixty-four

https://www.tecmint.com/wp-content/uploads/2016/03/Types-of-Linux-Shells.png

Bash Shell

2. Tcsh/Csh Shell

Tcsh is enhanced C shell, it can be used as a interactive login shell and shell script command

processor.

Tcsh has the following features:

▪ C like syntax
▪ Command-line editor
▪ Programmable word and filename completion
▪ Spelling correction
▪ Job control

https://www.tecmint.com/wp-content/uploads/2016/03/Bash-Shell.png

Tcsh Shell

3. Ksh Shell

Ksh stands for Korn shell and was designed and developed by David G. Korn. It is a

complete, powerful, high-level programming language and also an interactive command

language just like many other Unix/GNU Linux shells.

https://www.tecmint.com/wp-content/uploads/2016/03/Tcsh-Shell.png

Ksh Shell

4. Zsh Shell

Zsh is designed to be interactive and it incorporates many features of other Unix/GNU Linux

shells such as bash, tcsh and ksh.

It is also a powerful scripting language just like the other shells available. Though it has some

unique features that include:

▪ Filename generation
▪ Startup files
▪ Login/Logout watching
▪ Closing comments
▪ Concept index
▪ Variable index
▪ Functions index
▪ Key index and many more that you can find out in man pages

https://www.tecmint.com/wp-content/uploads/2016/03/Ksh-Shell.png

Zsh Shell

5. Fish

Fish in full stands for “friendly interactive shell” and was authored in 2005. It was intended

to be fully interactive and user friendly, just like the other shells, it has some pretty good

features that include:
▪ Man page completions
▪ Web based configuration
▪ Auto-suggestions
▪ Fully scriptable with clean scripts
▪ Support for term256 terminal technology

You can read more about fish shell at Fish – A Smart Interactive Shell for Linux

https://www.tecmint.com/fish-a-smart-and-user-friendly-interactive-shell-for-linux/
https://www.tecmint.com/wp-content/uploads/2016/03/Zsh-Shell.png

Unix Filesystem Organization

``Old'' (Original) file system

In the original Unix file system, Unix divided physical disks into logical disks

called partitions. Each partition is a standalone file system. We will use the term

``file system'' when referring to a single partition.

Each disk device is given its own major device number, and each partition has an

associated minor device number which the device driver uses to access the raw file

system.

The major/minor device number combination serves as a handle into the device

switch table. That is, the major number acts as an index, and the minor number is

passed as an argument to the driver routines so that they can recognize the specific

instance of a device.

Each filesystem contains:

https://www.tecmint.com/wp-content/uploads/2016/03/Fish-Shell.png

1.

a boot block located in the first few sectors of a file system. The boot block

contains the initial bootstrap program used to load the operating system.

Typically, the first sector contains a bootstrap program that reads in a larger

bootstrap program from the next few sectors, and so forth.

2.

a super block describes the state of the file system: the total size of the

partition, the block size, pointers to a list of free blocks, the inode number

of the root directory, magic number, etc.

3.

a linear array of inodes (short for ``index nodes''). There is a one to one

mapping of files to inodes and vice versa. An inode is identified by its

``inode number'', which contains the information needed to find the inode

itself on the disk

Thus, while users think of files in terms of file names, Unix thinks of files in

terms of inodes.

4.

data blocks blocks containing the actual contents of files

| | | | | | | | | | | | | | |

| B. B. | S. B. | Inodes | | | ... | Data Blocks |

| | | | | | | | | | | | | | |

An inode is the ``handle'' to a file and contains the following information:

• file ownership indication
• file type (e.g., regular, directory, special device, pipes, etc.)
• file access permissions. May have setuid (sticky) bit set.
• time of last access, and modification
• number of links (aliases) to the file
• pointers to the data blocks for the file
• size of the file in bytes (for regular files), major and minor device numbers

for special devices.

An integral number of inodes fits in a single data block.

Information the inode does not contain:

• path (short or full) name of file

Example

Look at /cs/bin/

< wpi /cs/bin 1 >ls -l

total 192

drwx------ 2 mvoorhis csadmin 4096 Jan 16 2001 archives/

-rws--x--- 1 root 771 32768 Jan 18 1999 csquotamgr*

-rwx------ 1 csadmin csadmin 162 Jan 12 1998 genQuota*

-rwx------ 1 csadmin csadmin 46 Feb 16 1998 generic*

drwxrwx--- 2 mvoorhis csadmin 4096 Oct 29 10:23 gredStuff/

-rwx------ 1 mvoorhis 1067 672 Jan 20 2000 list1*

-rwx------ 1 mvoorhis 1067 859 Jan 20 2000 list2*

-rwx------ 1 csadmin 646 140 Jan 10 2000 reclaim*

-rwxrwx--- 1 csadmin csadmin 1635 Sep 26 1995 stp_create_system.pl*

-rwxrwxr-x 1 csadmin csadmin 725 Sep 26 1995

stp_default_system.pl*

-rw-rw-r-- 1 csadmin csadmin 114 Feb 10 1995 stp_setup

drwx------ 14 mvoorhis csadmin 4096 Oct 30 14:57 tDir/

-rwsr-xr-x 1 mvoorhis 1067 114688 Nov 8 10:10 turnin*

drwxr-xr-x 2 root 771 4096 May 26 1999 utility/

Internally, Unix stores directories in files. The file type (of the inode) is marked

``directory'', and the file contains pairs of name/inode numbers.

For example, when a user issues open(``/etc/passwd'', ...) the kernel performs the

following operations:

1.

because the file name is a full path name, find the inode of the root

directory (found in superblock) and search the corresponding file for the

entry ``etc''

2.

when the entry ``etc'' is found, fetch its corresponding inode and check

that it is of type directory

3.

scan the file associated with ``/etc'' looking for ``passwd''

4.

finally, fetch the inode associated with passwd's directory entry, verify that

it is a regular file, and start accessing the file.

Note: What would the system do when opening ``/dev/tty01''?

Eventually, the system would find the inode corresponding to the device, and note

that its file type was ``special''. Thus, it would extract the major/minor device

number pair from the length field of the inode, and use the device number as an

index into the device switch table.

Getwd()

How to get string of current directory? Have only the inode of the current

directory.

get current inode

while (inode != root inode) {

 get inode of parent from ..

 search parent's directory file to match our inode number

Where should a file's data blocks be physically located?

• to improve performance, we might want to place a file's data blocks in
contiguous sectors on disk. However, this leads to inefficiencies in
allocating space, or forces the user to specify the size of the file at creation
time.

The Unix file system allocates data blocks (blocks that contain a file's contents)

one at a time from a pool of free blocks. Unix uses 4K blocks. Moreover, a file's

blocks are scattered randomly within the physical disk.

Inodes include pointers to the data blocks. Each inode contains 15 pointers:

• the first 12 pointers point directly to data blocks
• the 13th pointer points to an indirect block, a block containing pointers to

data blocks
• the 14th pointer points to a doubly-indirect block, a block containing 128

addresses of singly indirect blocks
• the 15th pointer points to a triply indirect block (which contains pointers to

doubly indirect blocks, etc.)

| | | | | | | | | | | | | | | |

 | | | | | | | | | | | | | | |--------------------------

 data blocks | |-----------| |

 | | |

 ----- ----- -----

 | | | | | |

 ----- ----- -----

 ||| ||| |||

 data ----- -----

 | | | |

 ----- -----

 ||| |||

 data -----

 | |

 |||

 data

with 4K blocks:

direct 12x4K = 48K

indirect 1024x4K = 4MB

double indirect 1024x1024x4K = 4GB

triple indirect 1024x1024x1024x4K = 4TB

Advantages:

• data in small files can be accessed directly from the inode That is, one read
operation fetches the inode, and another read fetches the first data block.

• larger files can be accessed efficiently, because an indirect block points to
many data blocks

• disk can be filled completely, with little wasted space (ignoring partially-
filled blocks)

Disadvantages:

• because inode information is kept separately from data, access of data
often requires a long seek when file is initially accessed

• inodes of files in a common directory not kept together, leading to low
performance when searching directories

• original file system only used 512-byte blocks, an inefficient transfer size
• data blocks of a file are not stored together, leading to poor performance

when accessing files sequentially.
• free list quickly becomes scrambled increasing overhead of finding free

blocks (seek for each new block)
• original file system used as little as 2% of the available disk bandwidth

The Berkeley Fast File System

The Berkeley Fast File System used the following principles to improve the

performance (and reliability) of the file system:

• duplicate the super block, so that it can easily be recovered after a disk
crash

• use a large block size to improve throughput
• add the block size to the superblock, so that different file systems could be

accessed using different block sizes
• store related data blocks within cylinder groups, one or more consecutive

cylinders on the disk. Blocks within in a cylinder group can be accessed with
only a small seek (if any)

• because large blocks leads to fragmentation, small files (or the remaining
bytes of a file) should be stored in fragments, where an integral number of
fragments (e.g., 4 or 8) fits in a single block. Use 4K/512 or 8K/1K
block/fragment size combinations. Inode stores 8-bit mask for fragment
use in last data block of the file.

A data structure within each cylinder group contains status information about the

blocks stored within that group:

1.

a bit map of blocks and fragments indicates which blocks and fragments are

free

2.

a list of inodes within the cylinder group (why?)

3.

duplicate copy of the superblock (stored on a different platter for each

cylinder group. why?)

When allocating space, the fast file system uses a global policy to determine where

to place new directories and files. For example:

• place inodes of files in the same directory in the same cylinder group
(makes programs like ls faster)

• place new directories in a cylinder group that has a higher than average
number of free inodes and the smallest number of directories already in it

• try to place all data blocks for a file in the same cylinder group
• move to a new cylinder group when a file exceeds 48kb, and every

megabyte thereafter.

The fast file system also uses a local policy to allocate blocks at the lower levels.

For instance:

• when adding a data block to an existing file, pick the next block to be
rotationally closest

• try to allocate blocks out of the same cylinder, before looking at other
blocks in the same cylinder group

The new file system increased the throughput to as much as 30% of the raw

bandwidth.

Linux ext2fs

The 2nd extended file system. Same standard file system as Unix.

Similar to the Berkeley fast file system, but does not use fragments. Rather it uses

smaller block sizes (1K, but can be 2K or 4K).

Tries to cluster disk blocks so that a single I/O request can read multiple blocks.

Modern disk technologies pack sectors onto disks at different densities--Linux uses

variable size block groups (like cylinder groups in BSD FFS).

Allocation:

• Tries to allocate data blocks in same group as inode.
• Tries to allocate nondirectory inodes in same group as parent directory
• Tries to allocate directory inodes in different group than parent directory

Also has a proc file system to allow access to process information through the file

system interface.

Also supports other file systems such as FAT and NTFS.

File Mounting

When the system initially boots, the only file system Unix knows about is the root

partition from which the system was booted. A special system call:

mount(special, path_name, options)

mounts the filesystem given by special at the point path_name in the root

filesystem, thus allowing multiple file systems to be merged into a single global

tree.

Internally, the kernel maintains a mount table that keeps information about the

mounted file systems. Each entry in the table contains:

• the device number of partition that has been mounted
• a pointer to the buffer containing the super block for the file system
• a pointer to the root inode of the file system
• a pointer to the inode of the directory in which the file system is mounted

(e.g., a pointer to the parent directory)

As the kernel is translating a path name, it consults the mount table as needed.

In Memory Data Structures

The kernel maintains a system-wide file table that describes open files. Each entry

in the file table contains:

• the read/write mark that indicates from where the next data block is to be
read

• a pointer to an entry in the active inode table, so that the access times can
be modified efficiently

Finally, each process maintains a user file table that describes the files opened by

the process. Entries in the user file table point to the system-wide file table.

Thus, a process can have its own private read/write mark (the default when a file is

initially opened), or it can share a read/write mark (as is the case when a new

process is created via fork).

Caching

Unix relies heavily on caching to improve performance. It keeps in memory:

• recently accessed disk blocks
• the inode of each open file in the system
• a cache of recent name-to-inode mappings
• a directory offset cache. If a process requests a file name in the same

directory as its previous request, the search through the directory is started
where the previous search ended. Improves the performance of
applications that read all files in a directory (like ls).

• The grep utilities are a family of Unix tools, including grep, egrep, and fgrep, that perform repetitive searching tasks. The

tools in the grep family are very similar, and all are used for searching the contents of files for information that matches

particular criteria. For most purposes, you'll want to use fgrep, since it's generally the fastest.

• The general syntax of the grep commands is:

• grep [-options] pattern [filename]

https://kb.iu.edu/d/agat

• You can use fgrep to find all the lines of a file that contain a particular word. For example, to list all the lines of a file

named myfile in the current directory that contain the word "dog", enter at the Unix prompt:

• fgrep dog myfile

• This will also return lines where "dog" is embedded in larger words, such as "dogma" or "dogged". You can use the -w option

with the grep command to return only lines where "dog" is included as a separate word:

• grep -w dog myfile

• To search for several words separated by spaces, enclose the whole search string in quotes, for example:

• fgrep "dog named Checkers" myfile

• The fgrep command is case sensitive; specifying "dog" will not match "Dog" or "DOG". You can use the -i option with

the grep command to match both upper- and lowercase letters:

• grep -i dog myfile

• To list the lines of myfile that do not contain "dog", use the -v option:

• fgrep -v dog myfile

• If you want to search for lines that contain any of several different words, you can create a second file

(named secondfile in the following example) that contains those words, and then use the -foption:

• fgrep -f secondfile myfile

• You can also use wildcards to instruct fgrep to search any files that match a particular pattern. For example, if you wanted

to find lines containing "dog" in any of the files in your directory with names beginning with "my", you could enter:

• fgrep dog my*

• This command would search files with names such as myfile, my.hw1, and mystuff in the current directory. Each line

returned will be prefaced with the name of the file where the match was found.

• By using pipes and/or redirection, you can use the output from any of these commands with other Unix tools, such

as more, sort, and cut. For example, to print the fifth word of every line of myfile containing "dog", sort the words

alphabetically, and then filter the output through the more command for easy reading, you would enter at the Unix prompt:

• fgrep dog myfile | cut -f5 -d" " | sort | more

• If you want to save the output in a file in the current directory named newfile, enter:

• fgrep dog myfile | cut -f5 -d" " | sort > newfile

find command in Linux with examples
The find command in UNIX is a command line utility for walking a file hierarchy. It can be used to find files and directories and perform subsequent operations on

them. It supports searching by file, folder, name, creation date, modification date, owner and permissions. By using the ‘-exec’ other UNIX commands can be executed

on files or folders found.

Syntax :

$ find [where to start searching from]

 [expression determines what to find] [-options] [what to find]

Options :

▪ -exec CMD: The file being searched which meets the above criteria and returns 0 for as its exit status for sucessful command execution.

▪ -ok CMD : It works same as -exec except the user is prompted first.

▪ -inum N : Search for files with inode number ‘N’.

▪ -links N : Search for files with ‘N’ links.

▪ -name demo : Search for files that are specified by ‘demo’.

▪ -newer file : Search for files that were modified/created after ‘file’.

▪ -perm octal : Search for the file if permission is ‘octal’.

▪ -print : Display the path name of the files found by using the rest of the criteria.

▪ -empty : Search for empty files and directories.

▪ -size +N/-N : Search for files of ‘N’ blocks; ‘N’ followed by ‘c’can be used to measure size in characters; ‘+N’ means size > ‘N’ blocks and ‘-N’ means size < 'N'

blocks.

▪ -user name : Search for files owned by user name or ID ‘name’.

▪ \(expr \) : True if ‘expr’ is true; used for grouping criteria combined with OR or AND.

▪ ! expr : True if ‘expr’ is false.

Examples :
Consider the following tree hirerachy :

What is a Process?

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/tree-5.png

An instance of a program is called a Process. In simple terms, any command that you give to your Linux machine starts
a new process.

Having multiple processes for the same program is possible.

Types of Processes:

• Foreground Processes: They run on the screen and need input from the user. For example Office Programs

• Background Processes: They run in the background and usually do not need user input. For example
Antivirus.

Please be patient. The Video will load in some time. If you still face issue viewing video click here

Running a Foreground Process

To start a foreground process, you can either run it from the dashboard, or you can run it from the terminal.

When using the Terminal, you will have to wait, until the foreground process runs.

https://www.guru99.com/faq.html#1
https://www.guru99.com/images/whatisprocessid.jpg

Running a Background process

If you start a foreground program/process from the terminal, then you cannot work on the terminal, till the program is up
and running.

Particular, data-intensive tasks take lots of processing power and may even take hours to complete. You do not want
your terminal to be held up for such a long time.

To avoid such a situation, you can run the program and send it to the background so that terminal remains available to
you. Let's learn how to do this -

Fg

You can use the command "fg" to continue a program which was stopped and bring it to the foreground.

The simple syntax for this utility is:

fg jobname

Example

1. Launch 'banshee' music player
2. Stop it with the 'ctrl +z' command
3. Continue it with the 'fg' utility.

https://www.guru99.com/images/foreground.png
https://www.guru99.com/images/bg.jpg

Let's look at other important commands to manage processes -

Top

This utility tells the user about all the running processes on the Linux machine.

Press 'q' on the keyboard to move out of the process display.

The terminology follows:

Field Description Example 1
Example
2

PID The process ID of each task 1525 961

User The username of task owner Home Root

PR
Priority Can be 20(highest) or -
20(lowest)

20 20

NI The nice value of a task 0 0

VIRT Virtual memory used (kb) 1775 75972

RES Physical memory used (kb) 100 51

SHR Shared memory used (kb) 28 7952

S

Status

There are five types:

 'D' = uninterruptible sleep

S R

https://www.guru99.com/images/fg.png
https://www.guru99.com/images/top.png

Field Description Example 1
Example
2

 'R' = running

 'S' = sleeping

 'T' = traced or stopped

 'Z' = zombie

%CPU % of CPU time 1.7 1.0

%MEM Physical memory used 10 5.1

TIME+ Total CPU time 5:05.34 2:23.42

Command Command name Photoshop.exe Xorg

PS

This command stands for 'Process Status'. It is similar to the "Task Manager" that pop-ups in a Windows Machine when
we use Cntrl+Alt+Del. This command is similar to 'top' command but the information displayed is different.

To check all the processes running under a user, use the command -

ps ux

You can also check the process status of a single process, use the syntax -

ps PID

Kill

This command terminates running processes on a Linux machine.

To use these utilities you need to know the PID (process id) of the process you want to kill

Syntax -

kill PID

To find the PID of a process simply type

pidof Process name

Let us try it with an example.

https://www.guru99.com/images/ps.png
https://www.guru99.com/images/ps_pid.jpg

NICE

Linux can run a lot of processes at a time, which can slow down the speed of some high priority processes and result in
poor performance.

To avoid this, you can tell your machine to prioritize processes as per your requirements.

This priority is called Niceness in Linux, and it has a value between -20 to 19. The lower the Niceness index, the higher
would be a priority given to that task.

The default value of all the processes is 0.

To start a process with a niceness value other than the default value use the following syntax

nice -n 'Nice value' process name

If there is some process already running on the system, then you can 'Renice' its value using syntax.

renice 'nice value' -p 'PID'

To change Niceness, you can use the 'top' command to determine the PID (process id) and its Nice value. Later use the
renice command to change the value.

Let us understand this by an example.

DF

This utility reports the free disk space(Hard Disk) on all the file systems.

https://www.guru99.com/images/kill.png
https://www.guru99.com/images/changing_niceness.png
https://www.guru99.com/images/renicing.png

If you want the above information in a readable format, then use the command

'df -h'

Free

This command shows the free and used memory (RAM) on the Linux system.

You can use the arguments

free -m to display output in MB

free -g to display output in GB

s

In Unix, there are three basic types of files −

• Ordinary Files − An ordinary file is a file on the system that contains data, text, or program instructions. In this

tutorial, you look at working with ordinary files.

• Directories − Directories store both special and ordinary files. For users familiar with Windows or Mac OS, Unix

directories are equivalent to folders.

• Special Files − Some special files provide access to hardware such as hard drives, CD-ROM drives, modems, and

Ethernet adapters. Other special files are similar to aliases or shortcuts and enable you to access a single file using

different names.

Listing Files
To list the files and directories stored in the current directory, use the

following command −

$ls

https://www.guru99.com/images/df.png
https://www.guru99.com/images/df-h.png
https://www.guru99.com/images/free.png

Here is the sample output of the above command −

$ls

bin hosts lib res.03
ch07 hw1 pub test_results
ch07.bak hw2 res.01 users
docs hw3 res.02 work

The command ls supports the -l option which would help you to get

more information about the listed files −

$ls -l
total 1962188

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml
-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg
drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ
drwxr-xr-x 2 root root 4096 Dec 9 2007 urlspedia
-rw-r--r-- 1 root root 276480 Dec 9 2007 urlspedia.tar
drwxr-xr-x 8 root root 4096 Nov 25 2007 usr
drwxr-xr-x 2 200 300 4096 Nov 25 2007 webthumb-1.01
-rwxr-xr-x 1 root root 3192 Nov 25 2007 webthumb.php
-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar
-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid
-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf
drwxr-xr-x 11 amrood amrood 4096 May 29 2007 zlib-1.2.3
$

Here is the information about all the listed columns −

• First Column − Represents the file type and the permission given on the file. Below is the description of all type of

files.

• Second Column − Represents the number of memory blocks taken by the file or directory.

• Third Column − Represents the owner of the file. This is the Unix user who created this file.

• Fourth Column − Represents the group of the owner. Every Unix user will have an associated group.

• Fifth Column − Represents the file size in bytes.

• Sixth Column − Represents the date and the time when this file was created or modified for the last time.

• Seventh Column − Represents the file or the directory name.

In the ls -l listing example, every file line begins with a d, -, or l. These

characters indicate the type of the file that's listed.

Sr.No. Prefix & Description

1
-

Regular file, such as an ASCII text file, binary executable, or hard link.

2
b

Block special file. Block input/output device file such as a physical hard drive.

3
c

Character special file. Raw input/output device file such as a physical hard drive.

4
d

Directory file that contains a listing of other files and directories.

5
l

Symbolic link file. Links on any regular file.

6
p

Named pipe. A mechanism for interprocess communications.

7
s

Socket used for interprocess communication.

Metacharacters
Metacharacters have a special meaning in Unix. For example, * and ? are

metacharacters. We use * to match 0 or more characters, a question

mark (?) matches with a single character.

For Example −

$ls ch*.doc

Displays all the files, the names of which start with ch and end

with .doc −

ch01-1.doc ch010.doc ch02.doc ch03-2.doc
ch04-1.doc ch040.doc ch05.doc ch06-2.doc
ch01-2.doc ch02-1.doc c

Here, * works as meta character which matches with any character. If

you want to display all the files ending with just .doc, then you can use

the following command −

$ls *.doc

Hidden Files
An invisible file is one, the first character of which is the dot or the period

character (.). Unix programs (including the shell) use most of these files

to store configuration information.

Some common examples of the hidden files include the files −

• .profile − The Bourne shell (sh) initialization script

• .kshrc − The Korn shell (ksh) initialization script

• .cshrc − The C shell (csh) initialization script

• .rhosts − The remote shell configuration file

To list the invisible files, specify the -a option to ls −

$ ls -a

. .profile docs lib test_results
.. .rhosts hosts pub users
.emacs bin hw1 res.01 work
.exrc ch07 hw2 res.02
.kshrc ch07.bak hw3 res.03
$

• Single dot (.) − This represents the current directory.

• Double dot (..) − This represents the parent directory.

Creating Files

You can use the vi editor to create ordinary files on any Unix system.

You simply need to give the following command −

$ vi filename

The above command will open a file with the given filename. Now, press

the key i to come into the edit mode. Once you are in the edit mode, you

can start writing your content in the file as in the following program −

This is unix file....I created it for the first time.....
I'm going to save this content in this file.

Once you are done with the program, follow these steps −

• Press the key esc to come out of the edit mode.

• Press two keys Shift + ZZ together to come out of the file completely.

You will now have a file created with filename in the current directory.

$ vi filename
$

Editing Files
You can edit an existing file using the vi editor. We will discuss in short

how to open an existing file −

$ vi filename

Once the file is opened, you can come in the edit mode by pressing the
key i and then you can proceed by editing the file. If you want to move

here and there inside a file, then first you need to come out of the edit
mode by pressing the key Esc. After this, you can use the following keys

to move inside a file −

• l key to move to the right side.

• h key to move to the left side.

• k key to move upside in the file.

• j key to move downside in the file.

So using the above keys, you can position your cursor wherever you

want to edit. Once you are positioned, then you can use the i key to
come in the edit mode. Once you are done with the editing in your file,

press Esc and finally two keys Shift + ZZ together to come out of the

file completely.

Display Content of a File
You can use the cat command to see the content of a file. Following is a

simple example to see the content of the above created file −

$ cat filename
This is unix file....I created it for the first time.....
I'm going to save this content in this file.
$

You can display the line numbers by using the -b option along with

the cat command as follows −

$ cat -b filename
1 This is unix file....I created it for the first time.....

2 I'm going to save this content in this file.
$

Counting Words in a File
You can use the wc command to get a count of the total number of lines,

words, and characters contained in a file. Following is a simple example

to see the information about the file created above −

$ wc filename
2 19 103 filename
$

Here is the detail of all the four columns −

• First Column − Represents the total number of lines in the file.

• Second Column − Represents the total number of words in the file.

• Third Column − Represents the total number of bytes in the file. This is the actual size of the file.

• Fourth Column − Represents the file name.

You can give multiple files and get information about those files at a

time. Following is simple syntax −

$ wc filename1 filename2 filename3

Copying Files
To make a copy of a file use the cp command. The basic syntax of the

command is −

$ cp source_file destination_file

Following is the example to create a copy of the existing file filename.

$ cp filename copyfile
$

You will now find one more file copyfile in your current directory. This

file will exactly be the same as the original file filename.

Renaming Files
To change the name of a file, use the mv command. Following is the

basic syntax −

$ mv old_file new_file

The following program will rename the existing file filename to newfile.

$ mv filename newfile
$

The mv command will move the existing file completely into the new file.

In this case, you will find only newfile in your current directory.

Deleting Files
To delete an existing file, use the rm command. Following is the basic

syntax −

$ rm filename

Caution − A file may contain useful information. It is always
recommended to be careful while using this Delete command. It is

better to use the -i option along with rm command.

Following is the example which shows how to completely remove the

existing file filename.

$ rm filename
$

You can remove multiple files at a time with the command given below −

$ rm filename1 filename2 filename3
$

Standard Unix Streams
Under normal circumstances, every Unix program has three streams

(files) opened for it when it starts up −

• stdin − This is referred to as the standard input and the associated file descriptor is 0. This is also represented as

STDIN. The Unix program will read the default input from STDIN.

• stdout − This is referred to as the standard output and the associated file descriptor is 1. This is also represented

as STDOUT. The Unix program will write the default output at STDOUT

• stderr − This is referred to as the standard error and the associated file descriptor is 2. This is also represented as

STDERR. The Unix program will write all the error messages at STDERR.

• In this chapter, we will discuss in detail about directory

management in Unix.

• A directory is a file the solo job of which is to store the file names

and the related information. All the files, whether ordinary, special,

or directory, are contained in directories.

• Unix uses a hierarchical structure for organizing files and
directories. This structure is often referred to as a directory tree.

The tree has a single root node, the slash character (/), and all

other directories are contained below it.

• Home Directory
• The directory in which you find yourself when you first login is

called your home directory.

• You will be doing much of your work in your home directory and

subdirectories that you'll be creating to organize your files.

• You can go in your home directory anytime using the following

command −

• $cd ~

• $

• Here ~ indicates the home directory. Suppose you have to go in

any other user's home directory, use the following command −

• $cd ~username

• $

• To go in your last directory, you can use the following command −

• $cd -

• $

• Absolute/Relative Pathnames
• Directories are arranged in a hierarchy with root (/) at the top. The

position of any file within the hierarchy is described by its

pathname.

• Elements of a pathname are separated by a /. A pathname is

absolute, if it is described in relation to root, thus absolute

pathnames always begin with a /.

• Following are some examples of absolute filenames.

• /etc/passwd

• /users/sjones/chem/notes

• /dev/rdsk/Os3

• A pathname can also be relative to your current working directory.
Relative pathnames never begin with /. Relative to user amrood's

home directory, some pathnames might look like this −

• chem/notes

• personal/res

• To determine where you are within the filesystem hierarchy at any

time, enter the command pwd to print the current working

directory −

• $pwd

• /user0/home/amrood

•

• $

• Listing Directories
• To list the files in a directory, you can use the following syntax −

• $ls dirname

• Following is the example to list all the files contained

in /usr/local directory −

• $ls /usr/local

•

• X11 bin gimp jikes sbin

• ace doc include lib share

• atalk etc info man ami

• Creating Directories
• We will now understand how to create directories. Directories are

created by the following command −

• $mkdir dirname

• Here, directory is the absolute or relative pathname of the directory

you want to create. For example, the command −

• $mkdir mydir

• $

• Creates the directory mydir in the current directory. Here is

another example −

• $mkdir /tmp/test-dir

• $

• This command creates the directory test-dir in the /tmp directory.
The mkdir command produces no output if it successfully creates

the requested directory.

• If you give more than one directory on the command

line, mkdir creates each of the directories. For example, −

• $mkdir docs pub

• $

• Creates the directories docs and pub under the current directory.

• Creating Parent Directories
• We will now understand how to create parent directories.

Sometimes when you want to create a directory, its parent

directory or directories might not exist. In this case, mkdirissues

an error message as follows −

• $mkdir /tmp/amrood/test

• mkdir: Failed to make directory "/tmp/amrood/test";

• No such file or directory

• $

• In such cases, you can specify the -p option to

the mkdir command. It creates all the necessary directories for

you. For example −

• $mkdir -p /tmp/amrood/test

• $

• The above command creates all the required parent directories.

• Removing Directories
• Directories can be deleted using the rmdir command as follows −

• $rmdir dirname

• $

• Note − To remove a directory, make sure it is empty which means

there should not be any file or sub-directory inside this directory.

• You can remove multiple directories at a time as follows −

• $rmdir dirname1 dirname2 dirname3

• $

• The above command removes the directories dirname1, dirname2,
and dirname3, if they are empty. The rmdir command produces no

output if it is successful.

• Changing Directories
• You can use the cd command to do more than just change to a

home directory. You can use it to change to any directory by

specifying a valid absolute or relative path. The syntax is as given

below −

• $cd dirname

• $

• Here, dirname is the name of the directory that you want to

change to. For example, the command −

• $cd /usr/local/bin

• $

• Changes to the directory /usr/local/bin. From this directory, you
can cd to the directory /usr/home/amrood using the following

relative path −

• $cd ../../home/amrood

• $

• Renaming Directories
• The mv (move) command can also be used to rename a directory.

The syntax is as follows −

• $mv olddir newdir

• $

• You can rename a directory mydir to yourdir as follows −

• $mv mydir yourdir

• $

• The directories . (dot) and .. (dot dot)
• The filename . (dot) represents the current working directory; and

the filename .. (dot dot) represents the directory one level above
the current working directory, often referred to as the parent

directory.

• If we enter the command to show a listing of the current working

directories/files and use the -a option to list all the files and the -l

option to provide the long listing, we will receive the following

result.

• $ls -la

• drwxrwxr-x 4 teacher class 2048 Jul 16 17.56 .

• drwxr-xr-x 60 root 1536 Jul 13 14:18 ..

• ---------- 1 teacher class 4210 May 1 08:27 .profile

• -rwxr-xr-x 1 teacher class 1948 May 12 13:42 memo

• $

In this chapter, we will discuss in detail about file permission and access

modes in Unix. File ownership is an important component of Unix that
provides a secure method for storing files. Every file in Unix has the

following attributes −

• Owner permissions − The owner's permissions determine what actions the owner of the file can perform on the

file.

• Group permissions − The group's permissions determine what actions a user, who is a member of the group that

a file belongs to, can perform on the file.

• Other (world) permissions − The permissions for others indicate what action all other users can perform on the

file.

The Permission Indicators
While using ls -l command, it displays various information related to file

permission as follows −

$ls -l /home/amrood
-rwxr-xr-- 1 amrood users 1024 Nov 2 00:10 myfile
drwxr-xr--- 1 amrood users 1024 Nov 2 00:10 mydir

Here, the first column represents different access modes, i.e., the

permission associated with a file or a directory.

The permissions are broken into groups of threes, and each position in
the group denotes a specific permission, in this order: read (r), write

(w), execute (x) −

• The first three characters (2-4) represent the permissions for the file's owner. For example, -rwxr-xr-- represents

that the owner has read (r), write (w) and execute (x) permission.

• The second group of three characters (5-7) consists of the permissions for the group to which the file belongs. For

example, -rwxr-xr-- represents that the group has read (r) and execute (x) permission, but no write permission.

• The last group of three characters (8-10) represents the permissions for everyone else. For example, -rwxr-xr--

 represents that there is read (r) only permission.

File Access Modes
The permissions of a file are the first line of defense in the security of a

Unix system. The basic building blocks of Unix permissions are
the read, write, and execute permissions, which have been described

below −

Read
Grants the capability to read, i.e., view the contents of the file.

Write
Grants the capability to modify, or remove the content of the file.

Execute
User with execute permissions can run a file as a program.

Directory Access Modes

Directory access modes are listed and organized in the same manner as

any other file. There are a few differences that need to be mentioned −

Read
Access to a directory means that the user can read the contents. The

user can look at the filenames inside the directory.

Write
Access means that the user can add or delete files from the directory.

Execute
Executing a directory doesn't really make sense, so think of this as a

traverse permission.

A user must have execute access to the bin directory in order to

execute the ls or the cdcommand.

Changing Permissions
To change the file or the directory permissions, you use
the chmod (change mode) command. There are two ways to use chmod

— the symbolic mode and the absolute mode.

Using chmod in Symbolic Mode
The easiest way for a beginner to modify file or directory permissions is

to use the symbolic mode. With symbolic permissions you can add,

delete, or specify the permission set you want by using the operators in

the following table.

Sr.No. Chmod operator & Description

1
+

Adds the designated permission(s) to a file or directory.

2
-

Removes the designated permission(s) from a file or directory.

3
=

Sets the designated permission(s).

Here's an example using testfile. Running ls -1 on the testfile shows

that the file's permissions are as follows −

$ls -l testfile
-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on

the testfile, followed by ls –l, so you can see the permission changes −

$chmod o+wx testfile
$ls -l testfile
-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile
$chmod u-x testfile

$ls -l testfile
-rw-rwxrwx 1 amrood users 1024 Nov 2 00:10 testfile
$chmod g = rx testfile
$ls -l testfile
-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Here's how you can combine these commands on a single line −

$chmod o+wx,u-x,g = rx testfile
$ls -l testfile
-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Using chmod with Absolute Permissions
The second way to modify permissions with the chmod command is to

use a number to specify each set of permissions for the file.

Each permission is assigned a value, as the following table shows, and

the total of each set of permissions provides a number for that set.

Number Octal Permission Representation Ref

0 No permission ---

1 Execute permission --x

2 Write permission -w-

3 Execute and write permission: 1 (execute) + 2 (write) = 3 -wx

4 Read permission r--

5 Read and execute permission: 4 (read) + 1 (execute) = 5 r-x

6 Read and write permission: 4 (read) + 2 (write) = 6 rw-

7 All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 rwx

Here's an example using the testfile. Running ls -1 on the testfile shows

that the file's permissions are as follows −

$ls -l testfile
-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on

the testfile, followed by ls –l, so you can see the permission changes −

$ chmod 755 testfile
$ls -l testfile
-rwxr-xr-x 1 amrood users 1024 Nov 2 00:10 testfile
$chmod 743 testfile
$ls -l testfile
-rwxr---wx 1 amrood users 1024 Nov 2 00:10 testfile
$chmod 043 testfile
$ls -l testfile
----r---wx 1 amrood users 1024 Nov 2 00:10 testfile

Changing Owners and Groups
While creating an account on Unix, it assigns a owner ID and a group
ID to each user. All the permissions mentioned above are also assigned

based on the Owner and the Groups.

Two commands are available to change the owner and the group of files

−

• chown − The chown command stands for "change owner" and is used to change the owner of a file.

• chgrp − The chgrp command stands for "change group" and is used to change the group of a file.

Changing Ownership
The chown command changes the ownership of a file. The basic syntax

is as follows −

$ chown user filelist

The value of the user can be either the name of a user on the system

or the user id (uid)of a user on the system.

The following example will help you understand the concept −

$ chown amrood testfile
$

Changes the owner of the given file to the user amrood.

NOTE − The super user, root, has the unrestricted capability to change
the ownership of any file but normal users can change the ownership of

only those files that they own.

Changing Group Ownership
The chgrp command changes the group ownership of a file. The basic

syntax is as follows −

$ chgrp group filelist

The value of group can be the name of a group on the system or the

group ID (GID) of a group on the system.

Following example helps you understand the concept −

$ chgrp special testfile
$

Changes the group of the given file to special group.

SUID and SGID File Permission
Often when a command is executed, it will have to be executed with

special privileges in order to accomplish its task.

As an example, when you change your password with

the passwd command, your new password is stored in the

file /etc/shadow.

As a regular user, you do not have read or write access to this file for
security reasons, but when you change your password, you need to have

the write permission to this file. This means that the passwd program
has to give you additional permissions so that you can write to the

file /etc/shadow.

Additional permissions are given to programs via a mechanism known as

the Set User ID (SUID) and Set Group ID (SGID) bits.

When you execute a program that has the SUID bit enabled, you inherit
the permissions of that program's owner. Programs that do not have the

SUID bit set are run with the permissions of the user who started the

program.

This is the case with SGID as well. Normally, programs execute with your
group permissions, but instead your group will be changed just for this

program to the group owner of the program.

The SUID and SGID bits will appear as the letter "s" if the permission is

available. The SUID "s" bit will be located in the permission bits where

the owners’ execute permission normally resides.

For example, the command −

$ ls -l /usr/bin/passwd
-r-sr-xr-x 1 root bin 19031 Feb 7 13:47 /usr/bin/passwd*
$

Shows that the SUID bit is set and that the command is owned by the

root. A capital letter S in the execute position instead of a

lowercase s indicates that the execute bit is not set.

If the sticky bit is enabled on the directory, files can only be removed if

you are one of the following users −

• The owner of the sticky directory

• The owner of the file being removed

• The super user, root

To set the SUID and SGID bits for any directory try the following

command −

$ chmod ug+s dirname
$ ls -l
drwsr-sr-x 2 root root 4096 Jun 19 06:45 dirname
$

In this chapter, we will discuss in detail about the Unix environment. An
important Unix concept is the environment, which is defined by

environment variables. Some are set by the system, others by you, yet

others by the shell, or any program that loads another program.

A variable is a character string to which we assign a value. The value

assigned could be a number, text, filename, device, or any other type of

data.

For example, first we set a variable TEST and then we access its value

using the echocommand −

$TEST="Unix Programming"

$echo $TEST

It produces the following result.

Unix Programming

Note that the environment variables are set without using the $ sign but
while accessing them we use the $ sign as prefix. These variables retain

their values until we come out of the shell.

When you log in to the system, the shell undergoes a phase

called initialization to set up the environment. This is usually a two-

step process that involves the shell reading the following files −

• /etc/profile

• profile

The process is as follows −

• The shell checks to see whether the file /etc/profile exists.

• If it exists, the shell reads it. Otherwise, this file is skipped. No error message is displayed.

• The shell checks to see whether the file .profile exists in your home directory. Your home directory is the directory

that you start out in after you log in.

• If it exists, the shell reads it; otherwise, the shell skips it. No error message is displayed.

As soon as both of these files have been read, the shell displays a

prompt −

$

This is the prompt where you can enter commands in order to have them

executed.

Note − The shell initialization process detailed here applies to
all Bourne type shells, but some additional files are used

by bash and ksh.

The .profile File
The file /etc/profile is maintained by the system administrator of your
Unix machine and contains shell initialization information required by all

users on a system.

The file .profile is under your control. You can add as much shell

customization information as you want to this file. The minimum set of

information that you need to configure includes −

• The type of terminal you are using.

• A list of directories in which to locate the commands.

• A list of variables affecting the look and feel of your terminal.

You can check your .profile available in your home directory. Open it

using the vi editor and check all the variables set for your environment.

Setting the Terminal Type
Usually, the type of terminal you are using is automatically configured by
either the login or getty programs. Sometimes, the auto configuration

process guesses your terminal incorrectly.

If your terminal is set incorrectly, the output of the commands might

look strange, or you might not be able to interact with the shell properly.

To make sure that this is not the case, most users set their terminal to

the lowest common denominator in the following way −

$TERM=vt100
$

Setting the PATH
When you type any command on the command prompt, the shell has to

locate the command before it can be executed.

The PATH variable specifies the locations in which the shell should look

for commands. Usually the Path variable is set as follows −

$PATH=/bin:/usr/bin
$

Here, each of the individual entries separated by the colon

character (:) are directories. If you request the shell to execute a
command and it cannot find it in any of the directories given in the PATH

variable, a message similar to the following appears −

$hello
hello: not found
$

There are variables like PS1 and PS2 which are discussed in the next

section.

PS1 and PS2 Variables
The characters that the shell displays as your command prompt are

stored in the variable PS1. You can change this variable to be anything
you want. As soon as you change it, it'll be used by the shell from that

point on.

For example, if you issued the command −

$PS1='=>'

=>

=>

=>

Your prompt will become =>. To set the value of PS1 so that it shows

the working directory, issue the command −

=>PS1="[\u@\h \w]\$"
[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$
[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$

The result of this command is that the prompt displays the user's

username, the machine's name (hostname), and the working directory.

There are quite a few escape sequences that can be used as value

arguments for PS1; try to limit yourself to the most critical so that the

prompt does not overwhelm you with information.

Sr.No. Escape Sequence & Description

1
\t

Current time, expressed as HH:MM:SS

2
\d

Current date, expressed as Weekday Month Date

3
\n

Newline

4
\s

Current shell environment

5
\W

Working directory

6
\w

Full path of the working directory

7
\u

Current user’s username

8
\h

Hostname of the current machine

9
\#

Command number of the current command. Increases when a new command is

entered

10
\$

If the effective UID is 0 (that is, if you are logged in as root), end the prompt with the

character; otherwise, use the $ sign

You can make the change yourself every time you log in, or you can have

the change made automatically in PS1 by adding it to your .profile file.

When you issue a command that is incomplete, the shell will display a

secondary prompt and wait for you to complete the command and

hit Enter again.

The default secondary prompt is > (the greater than sign), but can be

changed by re-defining the PS2 shell variable −

Following is the example which uses the default secondary prompt −

$ echo "this is a

> test"

this is a

test

$

The example given below re-defines PS2 with a customized prompt −

$ PS2="secondary prompt->"

$ echo "this is a

secondary prompt->test"

this is a

test

$

Environment Variables
Following is the partial list of important environment variables. These

variables are set and accessed as mentioned below −

Sr.No. Variable & Description

1
DISPLAY

Contains the identifier for the display that X11 programs should use by default.

2
HOME

Indicates the home directory of the current user: the default argument for the

cd built-in command.

3
IFS

Indicates the Internal Field Separator that is used by the parser for word splitting

after expansion.

4
LANG

LANG expands to the default system locale; LC_ALL can be used to override this. For

example, if its value is pt_BR, then the language is set to (Brazilian) Portuguese and

the locale to Brazil.

5
LD_LIBRARY_PATH

A Unix system with a dynamic linker, contains a colonseparated list of directories that

the dynamic linker should search for shared objects when building a process image

after exec, before searching in any other directories.

6
PATH

Indicates the search path for commands. It is a colon-separated list of directories in

which the shell looks for commands.

7
PWD

Indicates the current working directory as set by the cd command.

8
RANDOM

Generates a random integer between 0 and 32,767 each time it is referenced.

9
SHLVL

Increments by one each time an instance of bash is started. This variable is useful for

determining whether the built-in exit command ends the current session.

10
TERM

Refers to the display type.

11
TZ

Refers to Time zone. It can take values like GMT, AST, etc.

12
UID

Expands to the numeric user ID of the current user, initialized at the shell startup.

Following is the sample example showing few environment variables −

$ echo $HOME

/root

]$ echo $DISPLAY

$ echo $TERM

xterm

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/home/amrood/bin:/usr/local/bin

$

In this chapter, we will discuss in detail about Printing and Email as the

basic utilities of Unix. So far, we have tried to understand the Unix OS
and the nature of its basic commands. In this chapter, we will learn some

important Unix utilities that can be used in our day-to-day life.

Printing Files
Before you print a file on a Unix system, you may want to reformat it to
adjust the margins, highlight some words, and so on. Most files can also

be printed without reformatting, but the raw printout may not be that

appealing.

Many versions of Unix include two powerful text

formatters, nroff and troff.

The pr Command
The pr command does minor formatting of files on the terminal screen or

for a printer. For example, if you have a long list of names in a file, you

can format it onscreen into two or more columns.

Following is the syntax for the pr command −

pr option(s) filename(s)

The pr changes the format of the file only on the screen or on the
printed copy; it doesn't modify the original file. Following table lists

some pr options −

Sr.No. Option & Description

1
-k

Produces k columns of output

2
-d

Double-spaces the output (not on all pr versions)

3
-h "header"

Takes the next item as a report header

4
-t

Eliminates the printing of header and the top/bottom margins

5
-l PAGE_LENGTH

Sets the page length to PAGE_LENGTH (66) lines. The default number of lines of text is

56

6
-o MARGIN

Offsets each line with MARGIN (zero) spaces

7
-w PAGE_WIDTH

Sets the page width to PAGE_WIDTH (72) characters for multiple text-column output

only

Before using pr, here are the contents of a sample file named food.

$cat food
Sweet Tooth
Bangkok Wok
Mandalay
Afghani Cuisine
Isle of Java
Big Apple Deli
Sushi and Sashimi
Tio Pepe's Peppers
........
$

Let's use the pr command to make a two-column report with the

header Restaurants −

$pr -2 -h "Restaurants" food
Nov 7 9:58 1997 Restaurants Page 1

Sweet Tooth Isle of Java
Bangkok Wok Big Apple Deli
Mandalay Sushi and Sashimi
Afghani Cuisine Tio Pepe's Peppers
........
$

The lp and lpr Commands
The command lp or lpr prints a file onto paper as opposed to the screen
display. Once you are ready with formatting using the pr command, you

can use any of these commands to print your file on the printer

connected to your computer.

Your system administrator has probably set up a default printer at your
site. To print a file named food on the default printer, use

the lp or lpr command, as in the following example −

$lp food
request id is laserp-525 (1 file)
$

The lp command shows an ID that you can use to cancel the print job or

check its status.

• If you are using the lp command, you can use the -nNum option to print Num number of copies. Along with the

command lpr, you can use -Num for the same.

• If there are multiple printers connected with the shared network, then you can choose a printer using -

dprinter option along with lp command and for the same purpose you can use -Pprinter option along with lpr

command. Here printer is the printer name.

The lpstat and lpq Commands
The lpstat command shows what's in the printer queue: request IDs,

owners, file sizes, when the jobs were sent for printing, and the status of

the requests.

Use lpstat -o if you want to see all output requests other than just your

own. Requests are shown in the order they'll be printed −

$lpstat -o
laserp-573 john 128865 Nov 7 11:27 on laserp
laserp-574 grace 82744 Nov 7 11:28
laserp-575 john 23347 Nov 7 11:35
$

The lpq gives slightly different information than lpstat -o −

$lpq
laserp is ready and printing
Rank Owner Job Files Total Size
active john 573 report.ps 128865 bytes
1st grace 574 ch03.ps ch04.ps 82744 bytes
2nd john 575 standard input 23347 bytes
$

Here the first line displays the printer status. If the printer is disabled or

running out of paper, you may see different messages on this first line.

The cancel and lprm Commands
The cancel command terminates a printing request from the lp
command. The lprmcommand terminates all lpr requests. You can

specify either the ID of the request (displayed by lp or lpq) or the name

of the printer.

$cancel laserp-575
request "laserp-575" cancelled
$

To cancel whatever request is currently printing, regardless of its ID,

simply enter cancel and the printer name −

$cancel laserp
request "laserp-573" cancelled
$

The lprm command will cancel the active job if it belongs to you.
Otherwise, you can give job numbers as arguments, or use a dash (-) to

remove all of your jobs −

$lprm 575
dfA575diamond dequeued
cfA575diamond dequeued
$

The lprm command tells you the actual filenames removed from the

printer queue.

Sending Email
You use the Unix mail command to send and receive mail. Here is the

syntax to send an email −

$mail [-s subject] [-c cc-addr] [-b bcc-addr] to-addr

Here are important options related to mail command −s

Sr.No. Option & Description

1
-s

Specifies subject on the command line.

2
-c

Sends carbon copies to the list of users. List should be a commaseparated list of

names.

3
-b

Sends blind carbon copies to list. List should be a commaseparated list of names.

Following is an example to send a test message to admin@yahoo.com.

$mail -s "Test Message" admin@yahoo.com

You are then expected to type in your message, followed by "control-

D" at the beginning of a line. To stop, simply type dot (.) as follows −

Hi,

This is a test
.
Cc:

You can send a complete file using a redirect < operator as follows −

$mail -s "Report 05/06/07" admin@yahoo.com < demo.txt

To check incoming email at your Unix system, you simply type email as

follows −

$mail
no email

• In this chapter, we will discuss in detail about pipes and filters in

Unix. You can connect two commands together so that the output

from one program becomes the input of the next program. Two or
more commands connected in this way form a pipe.

• To make a pipe, put a vertical bar (|) on the command line
between two commands.

• When a program takes its input from another program, it performs
some operation on that input, and writes the result to the standard

output. It is referred to as a filter.

• The grep Command
• The grep command searches a file or files for lines that have a

certain pattern. The syntax is −

• $grep pattern file(s)

• The name "grep" comes from the ed (a Unix line editor)
command g/re/p which means “globally search for a regular

expression and print all lines containing it”.
• A regular expression is either some plain text (a word, for example)

and/or special characters used for pattern matching.
• The simplest use of grep is to look for a pattern consisting of a

single word. It can be used in a pipe so that only those lines of the
input files containing a given string are sent to the standard output.

If you don't give grep a filename to read, it reads its standard
input; that's the way all filter programs work −

• $ls -l | grep "Aug"

• -rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02

• -rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

• -rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

• -rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

• $

• There are various options which you can use along with

the grep command −

Sr.No. Option & Description

1
-v

Prints all lines that do not match pattern.

2
-n

Prints the matched line and its line number.

3
-l

Prints only the names of files with matching lines (letter "l")

4
-c

Prints only the count of matching lines.

5
-i

Matches either upper or lowercase.

• Let us now use a regular expression that tells grep to find lines
with "carol", followed by zero or other characters abbreviated in a

regular expression as ".*"), then followed by "Aug".−
• Here, we are using the -i option to have case insensitive search −

• $ls -l | grep -i "carol.*aug"

• -rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

• $

• The sort Command
• The sort command arranges lines of text alphabetically or

numerically. The following example sorts the lines in the food file −

• $sort food

• Afghani Cuisine

• Bangkok Wok

• Big Apple Deli

• Isle of Java

•

• Mandalay

• Sushi and Sashimi

• Sweet Tooth

• Tio Pepe's Peppers

• $

• The sort command arranges lines of text alphabetically by default.

There are many options that control the sorting −

Sr.No. Description

1
-n

Sorts numerically (example: 10 will sort after 2), ignores blanks and tabs.

2
-r

Reverses the order of sort.

3
-f

Sorts upper and lowercase together.

4
+x

Ignores first x fields when sorting.

• More than two commands may be linked up into a pipe. Taking a

previous pipe example using grep, we can further sort the files
modified in August by the order of size.

• The following pipe consists of the commands ls, grep, and sort −

• $ls -l | grep "Aug" | sort +4n

• -rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

• -rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

• -rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

• -rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02

• $

• This pipe sorts all files in your directory modified in August by the
order of size, and prints them on the terminal screen. The sort

option +4n skips four fields (fields are separated by blanks) then
sorts the lines in numeric order.

• The pg and more Commands
• A long output can normally be zipped by you on the screen, but if

you run text through more or use the pg command as a filter; the
display stops once the screen is full of text.

• Let's assume that you have a long directory listing. To make it
easier to read the sorted listing, pipe the output through more as

follows −

• $ls -l | grep "Aug" | sort +4n | more

• -rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

• -rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

• -rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

• -rw-rw-r-- 1 john doc 14827 Aug 9 12:40 ch03

• .

• .

• .

• -rw-rw-rw- 1 john doc 16867 Aug 6 15:56 ch05

• --More--(74%)

• The screen will fill up once the screen is full of text consisting of

lines sorted by the order of the file size. At the bottom of the
screen is the more prompt, where you can type a command to

move through the sorted text.
• Once you're done with this screen, you can use any of the

commands listed in the discussion of the more program.
•

In this chapter, we will discuss in detail about process management in

Unix. When you execute a program on your Unix system, the system
creates a special environment for that program. This environment

contains everything needed for the system to run the program as if no

other program were running on the system.

Whenever you issue a command in Unix, it creates, or starts, a new

process. When you tried out the ls command to list the directory
contents, you started a process. A process, in simple terms, is an

instance of a running program.

The operating system tracks processes through a five-digit ID number

known as the pid or the process ID. Each process in the system has a

unique pid.

Pids eventually repeat because all the possible numbers are used up and
the next pid rolls or starts over. At any point of time, no two processes

with the same pid exist in the system because it is the pid that Unix uses

to track each process.

Starting a Process

When you start a process (run a command), there are two ways you can

run it −

• Foreground Processes

• Background Processes

Foreground Processes
By default, every process that you start runs in the foreground. It gets

its input from the keyboard and sends its output to the screen.

You can see this happen with the ls command. If you wish to list all the

files in your current directory, you can use the following command −

$ls ch*.doc

This would display all the files, the names of which start with ch and end

with .doc −

ch01-1.doc ch010.doc ch02.doc ch03-2.doc
ch04-1.doc ch040.doc ch05.doc ch06-2.doc
ch01-2.doc ch02-1.doc

The process runs in the foreground, the output is directed to my screen,
and if the lscommand wants any input (which it does not), it waits for it

from the keyboard.

While a program is running in the foreground and is time-consuming, no
other commands can be run (start any other processes) because the

prompt would not be available until the program finishes processing and

comes out.

Background Processes
A background process runs without being connected to your keyboard. If

the background process requires any keyboard input, it waits.

The advantage of running a process in the background is that you can
run other commands; you do not have to wait until it completes to start

another!

The simplest way to start a background process is to add an ampersand

(&) at the end of the command.

$ls ch*.doc &

This displays all those files the names of which start with ch and end

with .doc −

ch01-1.doc ch010.doc ch02.doc ch03-2.doc
ch04-1.doc ch040.doc ch05.doc ch06-2.doc
ch01-2.doc ch02-1.doc

Here, if the ls command wants any input (which it does not), it goes into

a stop state until we move it into the foreground and give it the data

from the keyboard.

That first line contains information about the background process - the
job number and the process ID. You need to know the job number to

manipulate it between the background and the foreground.

Press the Enter key and you will see the following −

[1] + Done ls ch*.doc &
$

The first line tells you that the ls command background process finishes

successfully. The second is a prompt for another command.

Listing Running Processes
It is easy to see your own processes by running the ps (process status)

command as follows −

$ps
PID TTY TIME CMD
18358 ttyp3 00:00:00 sh
18361 ttyp3 00:01:31 abiword
18789 ttyp3 00:00:00 ps

One of the most commonly used flags for ps is the -f (f for full) option,

which provides more information as shown in the following example −

$ps -f
UID PID PPID C STIME TTY TIME CMD
amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one
amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one
amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh
amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

Here is the description of all the fields displayed by ps -f command −

Sr.No. Column & Description

1
UID

User ID that this process belongs to (the person running it)

2
PID

Process ID

3
PPID

Parent process ID (the ID of the process that started it)

4
C

CPU utilization of process

5
STIME

Process start time

6
TTY

Terminal type associated with the process

7
TIME

CPU time taken by the process

8
CMD

The command that started this process

There are other options which can be used along with ps command −

Sr.No. Option & Description

1
-a

Shows information about all users

2
-x

Shows information about processes without terminals

3
-u

Shows additional information like -f option

4
-e

Displays extended information

Stopping Processes
Ending a process can be done in several different ways. Often, from a
console-based command, sending a CTRL + C keystroke (the default

interrupt character) will exit the command. This works when the process

is running in the foreground mode.

If a process is running in the background, you should get its Job ID using

the ps command. After that, you can use the kill command to kill the

process as follows −

$ps -f
UID PID PPID C STIME TTY TIME CMD
amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one
amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one
amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh
amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f
$kill 6738
Terminated

Here, the kill command terminates the first_one process. If a process

ignores a regular kill command, you can use kill -9 followed by the

process ID as follows −

$kill -9 6738
Terminated

Parent and Child Processes
Each unix process has two ID numbers assigned to it: The Process ID
(pid) and the Parent process ID (ppid). Each user process in the system

has a parent process.

Most of the commands that you run have the shell as their parent. Check
the ps -f example where this command listed both the process ID and

the parent process ID.

Zombie and Orphan Processes

Normally, when a child process is killed, the parent process is updated
via a SIGCHLDsignal. Then the parent can do some other task or restart

a new child as needed. However, sometimes the parent process is killed
before its child is killed. In this case, the "parent of all processes,"

the init process, becomes the new PPID (parent process ID). In some

cases, these processes are called orphan processes.

When a process is killed, a ps listing may still show the process with
a Z state. This is a zombie or defunct process. The process is dead and

not being used. These processes are different from the orphan processes.
They have completed execution but still find an entry in the process

table.

Daemon Processes
Daemons are system-related background processes that often run with

the permissions of root and services requests from other processes.

A daemon has no controlling terminal. It cannot open /dev/tty. If you

do a "ps -ef" and look at the tty field, all daemons will have a ? for

the tty.

To be precise, a daemon is a process that runs in the background,
usually waiting for something to happen that it is capable of working

with. For example, a printer daemon waiting for print commands.

If you have a program that calls for lengthy processing, then it’s worth to

make it a daemon and run it in the background.

The top Command
The top command is a very useful tool for quickly showing processes

sorted by various criteria.

It is an interactive diagnostic tool that updates frequently and shows

information about physical and virtual memory, CPU usage, load

averages, and your busy processes.

Here is the simple syntax to run top command and to see the statistics of

CPU utilization by different processes −

$top

Job ID Versus Process ID
Background and suspended processes are usually manipulated via job

number (job ID). This number is different from the process ID and is

used because it is shorter.

In addition, a job can consist of multiple processes running in a series or
at the same time, in parallel. Using the job ID is easier than tracking

individual processes.

In this chapter, we will discuss in detail about network communication
utilities in Unix. When you work in a distributed environment, you need

to communicate with remote users and you also need to access remote

Unix machines.

There are several Unix utilities that help users compute in a networked,

distributed environment. This chapter lists a few of them.

The ping Utility
The ping command sends an echo request to a host available on the

network. Using this command, you can check if your remote host is

responding well or not.

The ping command is useful for the following −

• Tracking and isolating hardware and software problems.

• Determining the status of the network and various foreign hosts.

• Testing, measuring, and managing networks.

Syntax
Following is the simple syntax to use the ping command −

$ping hostname or ip-address

The above command starts printing a response after every second. To

come out of the command, you can terminate it by pressing CNTRL +

C keys.

Example
Following is an example to check the availability of a host available on

the network −

$ping google.com
PING google.com (74.125.67.100) 56(84) bytes of data.
64 bytes from 74.125.67.100: icmp_seq = 1 ttl = 54 time = 39.4 ms
64 bytes from 74.125.67.100: icmp_seq = 2 ttl = 54 time = 39.9 ms
64 bytes from 74.125.67.100: icmp_seq = 3 ttl = 54 time = 39.3 ms
64 bytes from 74.125.67.100: icmp_seq = 4 ttl = 54 time = 39.1 ms
64 bytes from 74.125.67.100: icmp_seq = 5 ttl = 54 time = 38.8 ms
--- google.com ping statistics ---
22 packets transmitted, 22 received, 0% packet loss, time 21017ms
rtt min/avg/max/mdev = 38.867/39.334/39.900/0.396 ms
$

If a host does not exist, you will receive the following output −

$ping giiiiiigle.com
ping: unknown host giiiiigle.com
$

The ftp Utility
Here, ftp stands for File Transfer Protocol. This utility helps you upload

and download your file from one computer to another computer.

The ftp utility has its own set of Unix-like commands. These commands

help you perform tasks such as −

• Connect and login to a remote host.

• Navigate directories.

• List directory contents.

• Put and get files.

• Transfer files as ascii, ebcdic or binary.

Syntax
Following is the simple syntax to use the ping command −

$ftp hostname or ip-address

The above command would prompt you for the login ID and the
password. Once you are authenticated, you can access the home

directory of the login account and you would be able to perform various

commands.

The following tables lists out a few important commands −

Sr.No. Command & Description

1
put filename

Uploads filename from the local machine to the remote machine.

2
get filename

Downloads filename from the remote machine to the local machine.

3
mput file list

Uploads more than one file from the local machine to the remote machine.

4
mget file list

Downloads more than one file from the remote machine to the local machine.

5
prompt off

Turns the prompt off. By default, you will receive a prompt to upload or download files

using mput or mget commands.

6
prompt on

Turns the prompt on.

7
dir

Lists all the files available in the current directory of the remote machine.

8
cd dirname

Changes directory to dirname on the remote machine.

9
lcd dirname

Changes directory to dirname on the local machine.

10
quit

Helps logout from the current login.

It should be noted that all the files would be downloaded or uploaded to
or from the current directories. If you want to upload your files in a

particular directory, you need to first change to that directory and then

upload the required files.

Example
Following is the example to show the working of a few commands −

$ftp amrood.com
Connected to amrood.com.
220 amrood.com FTP server (Ver 4.9 Thu Sep 2 20:35:07 CDT 2009)
Name (amrood.com:amrood): amrood
331 Password required for amrood.
Password:
230 User amrood logged in.
ftp> dir
200 PORT command successful.
150 Opening data connection for /bin/ls.
total 1464
drwxr-sr-x 3 amrood group 1024 Mar 11 20:04 Mail
drwxr-sr-x 2 amrood group 1536 Mar 3 18:07 Misc
drwxr-sr-x 5 amrood group 512 Dec 7 10:59 OldStuff
drwxr-sr-x 2 amrood group 1024 Mar 11 15:24 bin
drwxr-sr-x 5 amrood group 3072 Mar 13 16:10 mpl
-rw-r--r-- 1 amrood group 209671 Mar 15 10:57 myfile.out
drwxr-sr-x 3 amrood group 512 Jan 5 13:32 public
drwxr-sr-x 3 amrood group 512 Feb 10 10:17 pvm3
226 Transfer complete.
ftp> cd mpl
250 CWD command successful.
ftp> dir
200 PORT command successful.
150 Opening data connection for /bin/ls.
total 7320
-rw-r--r-- 1 amrood group 1630 Aug 8 1994 dboard.f
-rw-r----- 1 amrood group 4340 Jul 17 1994 vttest.c
-rwxr-xr-x 1 amrood group 525574 Feb 15 11:52 wave_shift
-rw-r--r-- 1 amrood group 1648 Aug 5 1994 wide.list
-rwxr-xr-x 1 amrood group 4019 Feb 14 16:26 fix.c
226 Transfer complete.
ftp> get wave_shift
200 PORT command successful.
150 Opening data connection for wave_shift (525574 bytes).
226 Transfer complete.
528454 bytes received in 1.296 seconds (398.1 Kbytes/s)
ftp> quit
221 Goodbye.
$

The telnet Utility
There are times when we are required to connect to a remote Unix
machine and work on that machine remotely. Telnet is a utility that

allows a computer user at one site to make a connection, login and then

conduct work on a computer at another site.

Once you login using Telnet, you can perform all the activities on your

remotely connected machine. The following is an example of Telnet

session −

C:>telnet amrood.com
Trying...
Connected to amrood.com.
Escape character is '^]'.

login: amrood
amrood's Password:

* *
* *
* WELCOME TO AMROOD.COM *
* *
* *

Last unsuccessful login: Fri Mar 3 12:01:09 IST 2009
Last login: Wed Mar 8 18:33:27 IST 2009 on pts/10

 { do your work }

$ logout
Connection closed.
C:>

The finger Utility
The finger command displays information about users on a given host.

The host can be either local or remote.

Finger may be disabled on other systems for security reasons.

Following is the simple syntax to use the finger command −

Check all the logged-in users on the local machine −

$ finger
Login Name Tty Idle Login Time Office
amrood pts/0 Jun 25 08:03 (62.61.164.115)

Get information about a specific user available on the local machine −

$ finger amrood
Login: amrood Name: (null)
Directory: /home/amrood Shell: /bin/bash
On since Thu Jun 25 08:03 (MST) on pts/0 from 62.61.164.115
No mail.
No Plan.

Check all the logged-in users on the remote machine −

$ finger @avtar.com
Login Name Tty Idle Login Time Office
amrood pts/0 Jun 25 08:03 (62.61.164.115)

Get the information about a specific user available on the remote

machine −

$ finger amrood@avtar.com
Login: amrood Name: (null)
Directory: /home/amrood Shell: /bin/bash
On since Thu Jun 25 08:03 (MST) on pts/0 from 62.61.164.115
No mail.
No Plan.

In this chapter, we will understand how the vi Editor works in Unix. There

are many ways to edit files in Unix. Editing files using the screen-
oriented text editor vi is one of the best ways. This editor enables you to

edit lines in context with other lines in the file.

An improved version of the vi editor which is called the VIM has also

been made available now. Here, VIM stands for Vi IMproved.

vi is generally considered the de facto standard in Unix editors because −

• It's usually available on all the flavors of Unix system.

• Its implementations are very similar across the board.

• It requires very few resources.

• It is more user-friendly than other editors such as the ed or the ex.

You can use the vi editor to edit an existing file or to create a new file

from scratch. You can also use this editor to just read a text file.

Starting the vi Editor

The following table lists out the basic commands to use the vi editor −

Sr.No. Command & Description

1
vi filename

Creates a new file if it already does not exist, otherwise opens an existing file.

2
vi -R filename

Opens an existing file in the read-only mode.

3
view filename

Opens an existing file in the read-only mode.

Following is an example to create a new file testfile if it already does not

exist in the current working directory −

$vi testfile

The above command will generate the following output −

|
~
~
~
~
~
~
~
~
~
~
~
~
"testfile" [New File]

You will notice a tilde (~) on each line following the cursor. A tilde

represents an unused line. If a line does not begin with a tilde and
appears to be blank, there is a space, tab, newline, or some other non-

viewable character present.

You now have one open file to start working on. Before proceeding

further, let us understand a few important concepts.

Operation Modes
While working with the vi editor, we usually come across the following

two modes −

• Command mode − This mode enables you to perform administrative tasks such as saving the files, executing the

commands, moving the cursor, cutting (yanking) and pasting the lines or words, as well as finding and replacing. In

this mode, whatever you type is interpreted as a command.

• Insert mode − This mode enables you to insert text into the file. Everything that's typed in this mode is

interpreted as input and placed in the file.

vi always starts in the command mode. To enter text, you must be in

the insert mode for which simply type i. To come out of the insert mode,

press the Esc key, which will take you back to the command mode.

Hint − If you are not sure which mode you are in, press the Esc key
twice; this will take you to the command mode. You open a file using the

vi editor. Start by typing some characters and then come to the

command mode to understand the difference.

Getting Out of vi
The command to quit out of vi is :q. Once in the command mode, type

colon, and 'q', followed by return. If your file has been modified in any
way, the editor will warn you of this, and not let you quit. To ignore this

message, the command to quit out of vi without saving is :q!. This lets

you exit vi without saving any of the changes.

The command to save the contents of the editor is :w. You can combine

the above command with the quit command, or use :wq and return.

The easiest way to save your changes and exit vi is with the ZZ
command. When you are in the command mode, type ZZ.

The ZZ command works the same way as the :wqcommand.

If you want to specify/state any particular name for the file, you can do
so by specifying it after the :w. For example, if you wanted to save the

file you were working on as another filename called filename2, you

would type :w filename2 and return.

Moving within a File
To move around within a file without affecting your text, you must be in

the command mode (press Esc twice). The following table lists out a few

commands you can use to move around one character at a time −

Sr.No. Command & Description

1
k

Moves the cursor up one line

2
j

Moves the cursor down one line

3
h

Moves the cursor to the left one character position

4
l

Moves the cursor to the right one character position

The following points need to be considered to move within a file −

• vi is case-sensitive. You need to pay attention to capitalization when using the commands.

• Most commands in vi can be prefaced by the number of times you want the action to occur. For example, 2j moves

the cursor two lines down the cursor location.

There are many other ways to move within a file in vi. Remember that
you must be in the command mode (press Esc twice). The following

table lists out a few commands to move around the file −

Given below is the list of commands to move around the file.

Control Commands
The following commands can be used with the Control Key to performs

functions as given in the table below −

Given below is the list of control commands.

Editing Files
To edit the file, you need to be in the insert mode. There are many ways

to enter the insert mode from the command mode −

Sr.No. Command & Description

1
i

Inserts text before the current cursor location

2
I

Inserts text at the beginning of the current line

3
a

Inserts text after the current cursor location

4
A

Inserts text at the end of the current line

5
o

Creates a new line for text entry below the cursor location

6
O

Creates a new line for text entry above the cursor location

Deleting Characters
Here is a list of important commands, which can be used to delete

characters and lines in an open file −

Sr.No. Command & Description

1
x

Deletes the character under the cursor location

2
X

Deletes the character before the cursor location

3
dw

Deletes from the current cursor location to the next word

4
d^

Deletes from the current cursor position to the beginning of the line

5
d$

Deletes from the current cursor position to the end of the line

6
D

Deletes from the cursor position to the end of the current line

7
dd

Deletes the line the cursor is on

As mentioned above, most commands in vi can be prefaced by the
number of times you want the action to occur. For example, 2x deletes

two characters under the cursor location and 2dd deletes two lines the

cursor is on.

It is recommended that the commands are practiced before we proceed

further.

Change Commands
You also have the capability to change characters, words, or lines in vi

without deleting them. Here are the relevant commands −

Sr.No. Command & Description

1
cc

Removes the contents of the line, leaving you in insert mode.

2
cw

Changes the word the cursor is on from the cursor to the lowercase w end of the word.

3
r

Replaces the character under the cursor. vi returns to the command mode after the

replacement is entered.

4
R

Overwrites multiple characters beginning with the character currently under the cursor.

You must use Esc to stop the overwriting.

5
s

Replaces the current character with the character you type. Afterward, you are left in

the insert mode.

6
S

Deletes the line the cursor is on and replaces it with the new text. After the new text is

entered, vi remains in the insert mode.

Copy and Paste Commands
You can copy lines or words from one place and then you can paste them

at another place using the following commands −

Sr.No. Command & Description

1
yy

Copies the current line.

2
yw

Copies the current word from the character the lowercase w cursor is on, until the end

of the word.

3
p

Puts the copied text after the cursor.

4
P

Puts the yanked text before the cursor.

Advanced Commands
There are some advanced commands that simplify day-to-day editing

and allow for more efficient use of vi −

Given below is the list advanced commands.

Word and Character Searching
The vi editor has two kinds of searches: string and character. For a
string search, the /and ? commands are used. When you start these

commands, the command just typed will be shown on the last line of the

screen, where you type the particular string to look for.

These two commands differ only in the direction where the search takes

place −

• The / command searches forwards (downwards) in the file.

• The ? command searches backwards (upwards) in the file.

The n and N commands repeat the previous search command in the

same or the opposite direction, respectively. Some characters have

special meanings. These characters must be preceded by a backslash (\)

to be included as part of the search expression.

Sr.No. Character &Description

1
^

Searches at the beginning of the line (Use at the beginning of a search expression).

2
.

Matches a single character.

3
*

Matches zero or more of the previous character.

4
$

End of the line (Use at the end of the search expression).

5
[

Starts a set of matching or non-matching expressions.

6
<

This is put in an expression escaped with the backslash to find the ending or the

beginning of a word.

7
>

This helps see the '<' character description above.

The character search searches within one line to find a character entered
after the command. The f and F commands search for a character on the

current line only. f searches forwards and F searches backwards and the

cursor moves to the position of the found character.

The t and T commands search for a character on the current line only,
but for t, the cursor moves to the position before the character,

and T searches the line backwards to the position after the character.

Set Commands
You can change the look and feel of your vi screen using the

following :set commands. Once you are in the command mode,

type :set followed by any of the following commands.

Sr.No. Command & Description

1
:set ic

Ignores the case when searching

2
:set ai

Sets autoindent

3
:set noai

Unsets autoindent

4
:set nu

Displays lines with line numbers on the left side

5
:set sw

Sets the width of a software tabstop. For example, you would set a shift width of 4

with this command — :set sw = 4

6
:set ws

If wrapscan is set, and the word is not found at the bottom of the file, it will try

searching for it at the beginning

7
:set wm

If this option has a value greater than zero, the editor will automatically "word wrap".

For example, to set the wrap margin to two characters, you would type this: :set wm

= 2

8
:set ro

Changes file type to "read only"

9
:set term

Prints terminal type

10
:set bf

Discards control characters from input

Running Commands
The vi has the capability to run commands from within the editor. To run
a command, you only need to go to the command mode and

type :! command.

For example, if you want to check whether a file exists before you try to

save your file with that filename, you can type :! ls and you will see the

output of ls on the screen.

You can press any key (or the command's escape sequence) to return to

your vi session.

Replacing Text

The substitution command (:s/) enables you to quickly replace words or
groups of words within your files. Following is the syntax to replace text

−

:s/search/replace/g

The g stands for globally. The result of this command is that all

occurrences on the cursor's line are changed.

Important Points to Note
The following points will add to your success with vi −

• You must be in command mode to use the commands. (Press Esc twice at any time to ensure that you are in

command mode.)

• You must be careful with the commands. These are case-sensitive.

• You must be in insert mode to enter text.

A shell script is a computer program designed to be run by the

Unix/Linux shell which could be one of the following:

• The Bourne Shell

• The C Shell

• The Korn Shell

• The GNU Bourne-Again Shell

A shell is a command-line interpreter and typical operations performed
by shell scripts include file manipulation, program execution, and printing

text.

Extended Shell Scripts
Shell scripts have several required constructs that tell the shell
environment what to do and when to do it. Of course, most scripts are

more complex than the above one.

The shell is, after all, a real programming language, complete with

variables, control structures, and so forth. No matter how complicated a

script gets, it is still just a list of commands executed sequentially.

The following script uses the read command which takes the input from

the keyboard and assigns it as the value of the variable PERSON and

finally prints it on STDOUT.

#!/bin/sh

Author : Zara Ali

Copyright (c) Tutorialspoint.com

Script follows here:

echo "What is your name?"

read PERSON

echo "Hello, $PERSON"

Here is a sample run of the script −

$./test.sh
What is your name?
Zara Ali
Hello, Zara Ali
$

Subsequent part of this tutorial will cover Unix/Linux Shell Scripting in

detail.

A Shell provides you with an interface to the Unix system. It gathers

input from you and executes programs based on that input. When a

program finishes executing, it displays that program's output.

Shell is an environment in which we can run our commands, programs,
and shell scripts. There are different flavors of a shell, just as there are

different flavors of operating systems. Each flavor of shell has its own set

of recognized commands and functions.

Shell Prompt
The prompt, $, which is called the command prompt, is issued by the

shell. While the prompt is displayed, you can type a command.

Shell reads your input after you press Enter. It determines the command
you want executed by looking at the first word of your input. A word is

an unbroken set of characters. Spaces and tabs separate words.

Following is a simple example of the date command, which displays the

current date and time −

$date
Thu Jun 25 08:30:19 MST 2009

You can customize your command prompt using the environment

variable PS1 explained in the Environment tutorial.

Shell Types
In Unix, there are two major types of shells −

• Bourne shell − If you are using a Bourne-type shell, the $ character is the default prompt.

• C shell − If you are using a C-type shell, the % character is the default prompt.

The Bourne Shell has the following subcategories −

• Bourne shell (sh)

• Korn shell (ksh)

• Bourne Again shell (bash)

• POSIX shell (sh)

The different C-type shells follow −

• C shell (csh)

• TENEX/TOPS C shell (tcsh)

The original Unix shell was written in the mid-1970s by Stephen R.

Bourne while he was at the AT&T Bell Labs in New Jersey.

Bourne shell was the first shell to appear on Unix systems, thus it is

referred to as "the shell".

Bourne shell is usually installed as /bin/sh on most versions of Unix.
For this reason, it is the shell of choice for writing scripts that can be

used on different versions of Unix.

In this chapter, we are going to cover most of the Shell concepts that are

based on the Borne Shell.

Shell Scripts
The basic concept of a shell script is a list of commands, which are listed
in the order of execution. A good shell script will have comments,

preceded by # sign, describing the steps.

There are conditional tests, such as value A is greater than value B, loops
allowing us to go through massive amounts of data, files to read and

store data, and variables to read and store data, and the script may

include functions.

We are going to write many scripts in the next sections. It would be a
simple text file in which we would put all our commands and several

other required constructs that tell the shell environment what to do and

when to do it.

Shell scripts and functions are both interpreted. This means they are not

compiled.

Example Script
Assume we create a test.sh script. Note all the scripts would have

the .sh extension. Before you add anything else to your script, you need

to alert the system that a shell script is being started. This is done using

the shebang construct. For example −

#!/bin/sh

This tells the system that the commands that follow are to be executed
by the Bourne shell. It's called a shebang because the # symbol is called

a hash, and the ! symbol is called a bang.

To create a script containing these commands, you put the shebang line

first and then add the commands −

#!/bin/bash
pwd
ls

Shell Comments
You can put your comments in your script as follows −

#!/bin/bash

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:
pwd
ls

Save the above content and make the script executable −

$chmod +x test.sh

The shell script is now ready to be executed −

$./test.sh

Upon execution, you will receive the following result −

/home/amrood
index.htm unix-basic_utilities.htm unix-directories.htm
test.sh unix-communication.htm unix-environment.htm

Note − To execute a program available in the current directory,

use ./program_name

In this chapter, we will understand shell decision-making in Unix. While
writing a shell script, there may be a situation when you need to adopt

one path out of the given two paths. So you need to make use of
conditional statements that allow your program to make correct decisions

and perform the right actions.

Unix Shell supports conditional statements which are used to perform

different actions based on different conditions. We will now understand

two decision-making statements here −

• The if...else statement

• The case...esac statement

The if...else statements
If else statements are useful decision-making statements which can be

used to select an option from a given set of options.

Unix Shell supports following forms of if…else statement −

• if...fi statement

• if...else...fi statement

• if...elif...else...fi statement

Most of the if statements check relations using relational operators

discussed in the previous chapter.

The case...esac Statement
You can use multiple if...elif statements to perform a multiway branch.

However, this is not always the best solution, especially when all of the

branches depend on the value of a single variable.

Unix Shell supports case...esac statement which handles exactly this
situation, and it does so more efficiently than

repeated if...elif statements.

There is only one form of case...esac statement which has been

described in detail here −

https://www.tutorialspoint.com/unix/if-fi-statement.htm
https://www.tutorialspoint.com/unix/if-else-statement.htm
https://www.tutorialspoint.com/unix/if-elif-statement.htm

• case...esac statement

The case...esac statement in the Unix shell is very similar to

the switch...case statement we have in other programming languages

like C or C++ and PERL, etc.

In this chapter, we will discuss shell loops in Unix. A loop is a powerful

programming tool that enables you to execute a set of commands
repeatedly. In this chapter, we will examine the following types of loops

available to shell programmers −

• The while loop

• The for loop

• The until loop

• The select loop

You will use different loops based on the situation. For example,

the while loop executes the given commands until the given condition
remains true; the until loop executes until a given condition becomes

true.

Once you have good programming practice you will gain the expertise

and thereby, start using appropriate loop based on the situation.
Here, while and for loops are available in most of the other

programming languages like C, C++ and PERL, etc.

Nesting Loops
All the loops support nesting concept which means you can put one loop

inside another similar one or different loops. This nesting can go up to

unlimited number of times based on your requirement.

Here is an example of nesting while loop. The other loops can be nested

based on the programming requirement in a similar way −

Nesting while Loops
It is possible to use a while loop as part of the body of another while

loop.

Syntax
while command1 ; # this is loop1, the outer loop
do
 Statement(s) to be executed if command1 is true

 while command2 ; # this is loop2, the inner loop
 do
 Statement(s) to be executed if command2 is true
 done

 Statement(s) to be executed if command1 is true
done

Example
Here is a simple example of loop nesting. Let's add another countdown

loop inside the loop that you used to count to nine −

https://www.tutorialspoint.com/unix/case-esac-statement.htm
https://www.tutorialspoint.com/unix/while-loop.htm
https://www.tutorialspoint.com/unix/for-loop.htm
https://www.tutorialspoint.com/unix/until-loop.htm
https://www.tutorialspoint.com/unix/select-loop.htm

#!/bin/sh

a=0

while ["$a" -lt 10] # this is loop1

do

 b="$a"

 while ["$b" -ge 0] # this is loop2

 do

 echo -n "$b "

 b=`expr $b - 1`

 done

 echo

 a=`expr $a + 1`

done

This will produce the following result. It is important to note how echo -

n works here. Here -n option lets echo avoid printing a new line

character.

0
1 0
2 1 0
3 2 1 0
4 3 2 1 0
5 4 3 2 1 0
6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

In this chapter, we will discuss shell loop control in Unix. So far you have

looked at creating loops and working with loops to accomplish different

tasks. Sometimes you need to stop a loop or skip iterations of the loop.

In this chapter, we will learn following two statements that are used to

control shell loops−

• The break statement

• The continue statement

The infinite Loop
All the loops have a limited life and they come out once the condition is

false or true depending on the loop.

A loop may continue forever if the required condition is not met. A loop
that executes forever without terminating executes for an infinite number

of times. For this reason, such loops are called infinite loops.

Example
Here is a simple example that uses the while loop to display the

numbers zero to nine −

#!/bin/sh

a=10

until [$a -lt 10]

do

 echo $a

 a=expr $a + 1`

done

This loop continues forever because a is always greater than or equal

to 10 and it is never less than 10.

The break Statement
The break statement is used to terminate the execution of the entire
loop, after completing the execution of all of the lines of code up to the

break statement. It then steps down to the code following the end of the

loop.

Syntax
The following break statement is used to come out of a loop −

break

The break command can also be used to exit from a nested loop using

this format −

break n

Here n specifies the nth enclosing loop to the exit from.

Example
Here is a simple example which shows that loop terminates as soon

as a becomes 5 −

#!/bin/sh

a=0

while [$a -lt 10]

do

 echo $a

 if [$a -eq 5]

 then

 break

 fi

 a=`expr $a + 1`

done

Upon execution, you will receive the following result −

0
1
2
3
4

5

Here is a simple example of nested for loop. This script breaks out of

both loops if var1 equals 2 and var2 equals 0 −

 Live Demo

#!/bin/sh

for var1 in 1 2 3

do

 for var2 in 0 5

 do

 if [$var1 -eq 2 -a $var2 -eq 0]

 then

 break 2

 else

 echo "$var1 $var2"

 fi

 done

done

Upon execution, you will receive the following result. In the inner loop,

you have a break command with the argument 2. This indicates that if a
condition is met you should break out of outer loop and ultimately from

the inner loop as well.

1 0
1 5

The continue statement
The continue statement is similar to the break command, except that it

causes the current iteration of the loop to exit, rather than the entire

loop.

This statement is useful when an error has occurred but you want to try

to execute the next iteration of the loop.

Syntax
continue

Like with the break statement, an integer argument can be given to the

continue command to skip commands from nested loops.

continue n

Here n specifies the nth enclosing loop to continue from.

Example
The following loop makes use of the continue statement which returns

from the continue statement and starts processing the next statement −

 Live Demo

#!/bin/sh

http://tpcg.io/NcYiyO
http://tpcg.io/SN4DzV

NUMS="1 2 3 4 5 6 7"

for NUM in $NUMS

do

 Q=`expr $NUM % 2`

 if [$Q -eq 0]

 then

 echo "Number is an even number!!"

 continue

 fi

 echo "Found odd number"

done

Upon execution, you will receive the following result −

Found odd number
Number is an even number!!
Found odd number
Number is an even number!!
Found odd number
Number is an even number!!
Found odd number

Unix / Linux - User Administration

Advertisements

 Previous Page

Next Page

In this chapter, we will discuss in detail about user administration in

Unix.

There are three types of accounts on a Unix system −

Root account
This is also called superuser and would have complete and unfettered
control of the system. A superuser can run any commands without any

restriction. This user should be assumed as a system administrator.

System accounts
System accounts are those needed for the operation of system-specific

components for example mail accounts and the sshd accounts. These
accounts are usually needed for some specific function on your system,

and any modifications to them could adversely affect the system.

https://www.tutorialspoint.com/unix/unix-file-system.htm
https://www.tutorialspoint.com/unix/unix-system-performance.htm

User accounts
User accounts provide interactive access to the system for users and
groups of users. General users are typically assigned to these accounts

and usually have limited access to critical system files and directories.

Unix supports a concept of Group Account which logically groups a

number of accounts. Every account would be a part of another group
account. A Unix group plays important role in handling file permissions

and process management.

Managing Users and Groups
There are four main user administration files −

• /etc/passwd − Keeps the user account and password information. This file holds the majority of information about

accounts on the Unix system.

• /etc/shadow − Holds the encrypted password of the corresponding account. Not all the systems support this file.

• /etc/group − This file contains the group information for each account.

• /etc/gshadow − This file contains secure group account information.

Check all the above files using the cat command.

The following table lists out commands that are available on majority of

Unix systems to create and manage accounts and groups −

Sr.No. Command & Description

1
useradd

Adds accounts to the system

2
usermod

Modifies account attributes

3
userdel

Deletes accounts from the system

4
groupadd

Adds groups to the system

5
groupmod

Modifies group attributes

6
groupdel

Removes groups from the system

You can use Manpage Help to check complete syntax for each command

mentioned here.

https://www.tutorialspoint.com/unix/unix-manpage-help.htm

Create a Group
We will now understand how to create a group. For this, we need to

create groups before creating any account otherwise, we can make use
of the existing groups in our system. We have all the groups listed

in /etc/groups file.

All the default groups are system account specific groups and it is not

recommended to use them for ordinary accounts. So, following is the

syntax to create a new group account −

 groupadd [-g gid [-o]] [-r] [-f] groupname

The following table lists out the parameters −

Sr.No. Option & Description

1
-g GID

The numerical value of the group's ID

2
-o

This option permits to add group with non-unique GID

3
-r

This flag instructs groupadd to add a system account

4
-f

This option causes to just exit with success status, if the specified group already

exists. With -g, if the specified GID already exists, other (unique) GID is chosen

5
groupname

Actual group name to be created

If you do not specify any parameter, then the system makes use of the

default values.

Following example creates a developers group with default values, which

is very much acceptable for most of the administrators.

$ groupadd developers

Modify a Group
To modify a group, use the groupmod syntax −

$ groupmod -n new_modified_group_name old_group_name

To change the developers_2 group name to developer, type −

$ groupmod -n developer developer_2

Here is how you will change the financial GID to 545 −

$ groupmod -g 545 developer

Delete a Group
We will now understand how to delete a group. To delete an existing

group, all you need is the groupdel command and the group name.

To delete the financial group, the command is −

$ groupdel developer

This removes only the group, not the files associated with that group.

The files are still accessible by their owners.

Create an Account
Let us see how to create a new account on your Unix system. Following

is the syntax to create a user's account −

useradd -d homedir -g groupname -m -s shell -u userid accountname

The following table lists out the parameters −

Sr.No. Option & Description

1
-d homedir

Specifies home directory for the account

2
-g groupname

Specifies a group account for this account

3
-m

Creates the home directory if it doesn't exist

4
-s shell

Specifies the default shell for this account

5
-u userid

You can specify a user id for this account

6
accountname

Actual account name to be created

If you do not specify any parameter, then the system makes use of the
default values. The useradd command modifies

the /etc/passwd, /etc/shadow, and /etc/group files and creates a

home directory.

Following is the example that creates an account mcmohd, setting its
home directory to /home/mcmohd and the group as developers. This

user would have Korn Shell assigned to it.

$ useradd -d /home/mcmohd -g developers -s /bin/ksh mcmohd

Before issuing the above command, make sure you already have

the developers group created using the groupadd command.

Once an account is created you can set its password using

the passwd command as follows −

$ passwd mcmohd20
Changing password for user mcmohd20.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.

When you type passwd accountname, it gives you an option to change
the password, provided you are a superuser. Otherwise, you can change

just your password using the same command but without specifying your

account name.

Modify an Account
The usermod command enables you to make changes to an existing

account from the command line. It uses the same arguments as

the useradd command, plus the -l argument, which allows you to

change the account name.

For example, to change the account name mcmohd to mcmohd20 and
to change home directory accordingly, you will need to issue the

following command −

$ usermod -d /home/mcmohd20 -m -l mcmohd mcmohd20

Delete an Account
The userdel command can be used to delete an existing user. This is a

very dangerous command if not used with caution.

There is only one argument or option available for the command .r, for

removing the account's home directory and mail file.

For example, to remove account mcmohd20, issue the following

command −

$ userdel -r mcmohd20

If you want to keep the home directory for backup purposes, omit the -

r option. You can remove the home directory as needed at a later time.

In this chapter, we will discuss in detail about the Shell quoting

mechanisms. We will start by discussing the metacharacters.

The Metacharacters
Unix Shell provides various metacharacters which have special meaning
while using them in any Shell Script and causes termination of a word

unless quoted.

For example, ? matches with a single character while listing files in a
directory and an *matches more than one character. Here is a list of

most of the shell special characters (also called metacharacters) −

* ? [] ' " \ $; & () | ^ < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it

with a \.

Example
Following example shows how to print a * or a ? −

 Live Demo

#!/bin/sh

echo Hello; Word

Upon execution, you will receive the following result −

Hello
./test.sh: line 2: Word: command not found

shell returned 127

Let us now try using a quoted character −

 Live Demo

#!/bin/sh

echo Hello\; Word

Upon execution, you will receive the following result −

Hello; Word

The $ sign is one of the metacharacters, so it must be quoted to avoid

special handling by the shell −

 Live Demo

#!/bin/sh

echo "I have \$1200"

Upon execution, you will receive the following result −

I have $1200

The following table lists the four forms of quoting −

Sr.No. Quoting & Description

1
Single quote

All special characters between these quotes lose their special meaning.

2
Double quote

Most special characters between these quotes lose their special meaning with these

http://tpcg.io/Zys0js
http://tpcg.io/NMnaJv
http://tpcg.io/RdOwAg

exceptions −

• $

• `

• \$

• \'

• \"

• \\

3
Backslash

Any character immediately following the backslash loses its special meaning.

4
Back quote

Anything in between back quotes would be treated as a command and would be

executed.

The Single Quotes
Consider an echo command that contains many special shell characters −

echo <-$1500.**>; (update?) [y|n]

Putting a backslash in front of each special character is tedious and

makes the line difficult to read −

echo \<-\$1500.**\>\; \(update\?\) \[y\|n\]

There is an easy way to quote a large group of characters. Put a single

quote (') at the beginning and at the end of the string −

echo '<-$1500.**>; (update?) [y|n]'

Characters within single quotes are quoted just as if a backslash is in
front of each character. With this, the echo command displays in a

proper way.

If a single quote appears within a string to be output, you should not put

the whole string within single quotes instead you should precede that

using a backslash (\) as follows −

echo 'It\'s Shell Programming'

The Double Quotes
Try to execute the following shell script. This shell script makes use of

single quote −

 Live Demo

VAR=ZARA

echo '$VAR owes <-$1500.**>; [as of (`date +%m/%d`)]'

Upon execution, you will receive the following result −

$VAR owes <-$1500.**>; [as of (`date +%m/%d`)]

http://tpcg.io/U3IE2i

This is not what had to be displayed. It is obvious that single quotes
prevent variable substitution. If you want to substitute variable values

and to make inverted commas work as expected, then you would need to

put your commands in double quotes as follows −

 Live Demo

VAR=ZARA

echo "$VAR owes <-\$1500.**>; [as of (`date +%m/%d`)]"

Upon execution, you will receive the following result −

ZARA owes <-$1500.**>; [as of (07/02)]

Double quotes take away the special meaning of all characters except the

following −

• $ for parameter substitution

• Backquotes for command substitution

• \$ to enable literal dollar signs

• \` to enable literal backquotes

• \" to enable embedded double quotes

• \\ to enable embedded backslashes

• All other \ characters are literal (not special)

Characters within single quotes are quoted just as if a backslash is in

front of each character. This helps the echo command display properly.

If a single quote appears within a string to be output, you should not put
the whole string within single quotes instead you should precede that

using a backslash (\) as follows −

echo 'It\'s Shell Programming'

The Backquotes
Putting any Shell command in between backquotes executes the

command.

Syntax
Here is the simple syntax to put any Shell command in between

backquotes −

var=`command`

Example
The date command is executed in the following example and the

produced result is stored in DATA variable.

 Live Demo

DATE=`date`

http://tpcg.io/5DzVN3
http://tpcg.io/90knhD

echo "Current Date: $DATE"

Upon execution, you will receive the following result −

Current Date: Thu Jul 2 05:28:45 MST 2009

In this chapter, we will discuss in detail about the system performance in

Unix.

We will introduce you to a few free tools that are available to monitor

and manage performance on Unix systems. These tools also provide
guidelines on how to diagnose and fix performance problems in the Unix

environment.

Unix has following major resource types that need to be monitored and

tuned −

• CPU

• Memory

• Disk space

• Communications lines

• I/O Time

• Network Time

• Applications programs

Performance Components
The following table lists out five major components which take up the

system time −

Sr.No. Component & Description

1
User State CPU

The actual amount of time the CPU spends running the users’ program in the user

state. It includes the time spent executing library calls, but does not include the time

spent in the kernel on its behalf

2
System State CPU

This is the amount of time the CPU spends in the system state on behalf of this

program. All I/O routines require kernel services. The programmer can affect this

value by blocking I/O transfers

3
I/O Time and Network Time

This is the amount of time spent moving data and servicing I/O requests

4
Virtual Memory Performance

This includes context switching and swapping

5
Application Program

Time spent running other programs - when the system is not servicing this application

because another application currently has the CPU

Performance Tools
Unix provides following important tools to measure and fine tune Unix

system performance −

Sr.No. Command & Description

1
nice/renice

Runs a program with modified scheduling priority

2
netstat

Prints network connections, routing tables, interface statistics, masquerade

connections, and multicast memberships

3
time

Helps time a simple command or give resource usage

4
uptime

This is System Load Average

5
ps

Reports a snapshot of the current processes

6
vmstat

Reports virtual memory statistics

7
gprof

Displays call graph profile data

8
prof

Facilitates Process Profiling

9
top

Displays system tasks

Yo

Extended Shell Scripts

Shell scripts have several required constructs that tell the shell
environment what to do and when to do it. Of course, most scripts are

more complex than the above one.

The shell is, after all, a real programming language, complete with

variables, control structures, and so forth. No matter how complicated a

script gets, it is still just a list of commands executed sequentially.

The following script uses the read command which takes the input from
the keyboard and assigns it as the value of the variable PERSON and

finally prints it on STDOUT.

#!/bin/sh

Author : Zara Ali

Copyright (c) Tutorialspoint.com

Script follows here:

echo "What is your name?"

read PERSON

echo "Hello, $PERSON"

Here is a sample run of the script −

$./test.sh
What is your name?
Zara Ali
Hello, Zara Ali
$

There are various operators supported by each shell. We will discuss in

detail about Bourne shell (default shell) in this chapter.

We will now discuss the following operators −

• Arithmetic Operators

• Relational Operators

• Boolean Operators

• String Operators

• File Test Operators

Bourne shell didn't originally have any mechanism to perform simple

arithmetic operations but it uses external programs, either awk or expr.

The following example shows how to add two numbers −

 Live Demo

#!/bin/sh

val=`expr 2 + 2`

echo "Total value : $val"

The above script will generate the following result −

Total value : 4

http://tpcg.io/zURE2C

The following points need to be considered while adding −

• There must be spaces between operators and expressions. For example, 2+2 is not correct; it should be written as

2 + 2.

• The complete expression should be enclosed between ‘ ‘, called the backtick.

Arithmetic Operators
The following arithmetic operators are supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then −

Show Examples

Operator Description Example

+ (Addition) Adds values on either side of the operator `expr $a + $b` will give

30

- (Subtraction) Subtracts right hand operand from left hand

operand

`expr $a - $b` will give -

10

* (Multiplication) Multiplies values on either side of the operator `expr $a * $b` will give

200

/ (Division) Divides left hand operand by right hand operand `expr $b / $a` will give 2

% (Modulus) Divides left hand operand by right hand operand

and returns remainder

`expr $b % $a` will give

0

= (Assignment)
Assigns right operand in left operand

a = $b would assign value

of b into a

== (Equality) Compares two numbers, if both are same then

returns true.

[$a == $b] would return

false.

!= (Not Equality) Compares two numbers, if both are different

then returns true.

[$a != $b] would return

true.

It is very important to understand that all the conditional expressions

should be inside square braces with spaces around them, for example [

$a == $b] is correct whereas, [$a==$b] is incorrect.

All the arithmetical calculations are done using long integers.

Relational Operators
Bourne Shell supports the following relational operators that are specific

to numeric values. These operators do not work for string values unless

their value is numeric.

For example, following operators will work to check a relation between
10 and 20 as well as in between "10" and "20" but not in between "ten"

and "twenty".

Assume variable a holds 10 and variable b holds 20 then −

https://www.tutorialspoint.com/unix/unix-arithmetic-operators.htm

Show Examples

Operator Description Example

-eq Checks if the value of two operands are equal or not; if

yes, then the condition becomes true.

[$a -eq $b] is not true.

-ne Checks if the value of two operands are equal or not; if

values are not equal, then the condition becomes true.
[$a -ne $b] is true.

-gt Checks if the value of left operand is greater than the

value of right operand; if yes, then the condition becomes

true.

[$a -gt $b] is not true.

-lt Checks if the value of left operand is less than the value of

right operand; if yes, then the condition becomes true.
[$a -lt $b] is true.

-ge Checks if the value of left operand is greater than or equal

to the value of right operand; if yes, then the condition

becomes true.

[$a -ge $b] is not true.

-le Checks if the value of left operand is less than or equal to
the value of right operand; if yes, then the condition

becomes true.
[$a -le $b] is true.

It is very important to understand that all the conditional expressions
should be placed inside square braces with spaces around them. For

example, [$a <= $b] is correct whereas, [$a <= $b] is incorrect.

Boolean Operators
The following Boolean operators are supported by the Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then −

Show Examples

Operator Description Example

! This is logical negation. This inverts a true

condition into false and vice versa.
[! false] is true.

-o This is logical OR. If one of the operands is true,

then the condition becomes true.
[$a -lt 20 -o $b -gt 100] is true.

-a This is logical AND. If both the operands are

true, then the condition becomes true otherwise

false.

[$a -lt 20 -a $b -gt 100] is false.

String Operators
The following string operators are supported by Bourne Shell.

Assume variable a holds "abc" and variable b holds "efg" then −

Show Examples

Operator Description Example

https://www.tutorialspoint.com/unix/unix-relational-operators.htm
https://www.tutorialspoint.com/unix/unix-boolean-operators.htm
https://www.tutorialspoint.com/unix/unix-string-operators.htm

= Checks if the value of two operands are equal or not; if

yes, then the condition becomes true.
[$a = $b] is not true.

!= Checks if the value of two operands are equal or not; if

values are not equal then the condition becomes true.

[$a != $b] is true.

-z Checks if the given string operand size is zero; if it is

zero length, then it returns true.

[-z $a] is not true.

-n Checks if the given string operand size is non-zero; if it

is nonzero length, then it returns true.

[-n $a] is not false.

Str Checks if str is not the empty string; if it is empty,

then it returns false.

[$a] is not false.

File Test Operators
We have a few operators that can be used to test various properties

associated with a Unix file.

Assume a variable file holds an existing file name "test" the size of which

is 100 bytes and has read, write and execute permission on −

Show Examples

Operator Description Example

-b file Checks if file is a block special file; if yes, then the

condition becomes true.

[-b $file] is false.

-c file Checks if file is a character special file; if yes, then the

condition becomes true.

[-c $file] is false.

-d file Checks if file is a directory; if yes, then the condition

becomes true.

[-d $file] is not true.

-f file Checks if file is an ordinary file as opposed to a directory

or special file; if yes, then the condition becomes true.

[-f $file] is true.

-g file Checks if file has its set group ID (SGID) bit set; if yes,

then the condition becomes true.

[-g $file] is false.

-k file Checks if file has its sticky bit set; if yes, then the

condition becomes true.
[-k $file] is false.

-p file Checks if file is a named pipe; if yes, then the condition

becomes true.
[-p $file] is false.

-t file Checks if file descriptor is open and associated with a

terminal; if yes, then the condition becomes true.

[-t $file] is false.

-u file Checks if file has its Set User ID (SUID) bit set; if yes,

then the condition becomes true.

[-u $file] is false.

-r file Checks if file is readable; if yes, then the condition

becomes true.

[-r $file] is true.

https://www.tutorialspoint.com/unix/unix-file-operators.htm

-w file Checks if file is writable; if yes, then the condition

becomes true.
[-w $file] is true.

-x file Checks if file is executable; if yes, then the condition

becomes true.

[-x $file] is true.

-s file Checks if file has size greater than 0; if yes, then

condition becomes true.

[-s $file] is true.

-e file Checks if file exists; is true even if file is a directory but

exists.

[-e $file] is true.

C Shell Operators
Following link will give you a brief idea on C Shell Operators −

C Shell Operators

Korn Shell Operators
Following link helps you understand Korn Shell Operators −

Korn Shell Operators

Input output redirection

In this chapter, we will discuss in detail about the Shell input/output
redirections. Most Unix system commands take input from your terminal

and send the resulting output back to your terminal. A command
normally reads its input from the standard input, which happens to be

your terminal by default. Similarly, a command normally writes its output

to standard output, which is again your terminal by default.

Output Redirection
The output from a command normally intended for standard output can
be easily diverted to a file instead. This capability is known as output

redirection.

If the notation > file is appended to any command that normally writes

its output to standard output, the output of that command will be written

to file instead of your terminal.

Check the following who command which redirects the complete output

of the command in the users file.

$ who > users

Notice that no output appears at the terminal. This is because the output
has been redirected from the default standard output device (the

terminal) into the specified file. You can check the users file for the

complete content −

$ cat users
oko tty01 Sep 12 07:30
ai tty15 Sep 12 13:32
ruth tty21 Sep 12 10:10
pat tty24 Sep 12 13:07
steve tty25 Sep 12 13:03

https://www.tutorialspoint.com/unix/unix-c-shell-operators.htm
https://www.tutorialspoint.com/unix/unix-korn-shell-operators.htm

$

If a command has its output redirected to a file and the file already

contains some data, that data will be lost. Consider the following

example −

$ echo line 1 > users
$ cat users
line 1
$

You can use >> operator to append the output in an existing file as

follows −

$ echo line 2 >> users
$ cat users
line 1
line 2
$

Input Redirection
Just as the output of a command can be redirected to a file, so can the

input of a command be redirected from a file. As the greater-than
character > is used for output redirection, the less-than character

< is used to redirect the input of a command.

The commands that normally take their input from the standard input

can have their input redirected from a file in this manner. For example,
to count the number of lines in the file users generated above, you can

execute the command as follows −

$ wc -l users
2 users
$

Upon execution, you will receive the following output. You can count the

number of lines in the file by redirecting the standard input of

the wc command from the file users −

$ wc -l < users
2
$

Note that there is a difference in the output produced by the two forms
of the wc command. In the first case, the name of the file users is listed

with the line count; in the second case, it is not.

In the first case, wc knows that it is reading its input from the file users.

In the second case, it only knows that it is reading its input from

standard input so it does not display file name.

Here Document
A here document is used to redirect input into an interactive shell script

or program.

We can run an interactive program within a shell script without user
action by supplying the required input for the interactive program, or

interactive shell script.

The general form for a here document is −

command << delimiter

document
delimiter

Here the shell interprets the << operator as an instruction to read input
until it finds a line containing the specified delimiter. All the input lines up

to the line containing the delimiter are then fed into the standard input of

the command.

The delimiter tells the shell that the here document has completed.
Without it, the shell continues to read the input forever. The delimiter

must be a single word that does not contain spaces or tabs.

Following is the input to the command wc -l to count the total number of

lines −

$wc -l << EOF

 This is a simple lookup program

 for good (and bad) restaurants

 in Cape Town.

EOF

3

$

You can use the here document to print multiple lines using your script

as follows −

 Live Demo

#!/bin/sh

cat << EOF

This is a simple lookup program

for good (and bad) restaurants

in Cape Town.

EOF

Upon execution, you will receive the following result −

This is a simple lookup program
for good (and bad) restaurants
in Cape Town.

The following script runs a session with the vi text editor and saves the

input in the file test.txt.

#!/bin/sh

filename=test.txt

vi $filename <<EndOfCommands

i

This file was created automatically from

a shell script

^[

ZZ

EndOfCommands

http://tpcg.io/o3GfEg

If you run this script with vim acting as vi, then you will likely see output

like the following −

$ sh test.sh
Vim: Warning: Input is not from a terminal
$

After running the script, you should see the following added to the

file test.txt −

$ cat test.txt
This file was created automatically from
a shell script
$

Discard the output
Sometimes you will need to execute a command, but you don't want the
output displayed on the screen. In such cases, you can discard the

output by redirecting it to the file /dev/null −

$ command > /dev/null

Here command is the name of the command you want to execute. The

file /dev/null is a special file that automatically discards all its input.

To discard both output of a command and its error output, use standard

redirection to redirect STDERR to STDOUT −

$ command > /dev/null 2>&1

Here 2 represents STDERR and 1 represents STDOUT. You can display

a message on to STDERR by redirecting STDOUT into STDERR as follows

−

$ echo message 1>&2

Redirection Commands
Following is a complete list of commands which you can use for

redirection −

Sr.No. Command & Description

1
pgm > file

Output of pgm is redirected to file

2
pgm < file

Program pgm reads its input from file

3
pgm >> file

Output of pgm is appended to file

4
n > file

Output from stream with descriptor n redirected to file

5
n >> file

Output from stream with descriptor n appended to file

6
n >& m

Merges output from stream n with stream m

7
n <& m

Merges input from stream n with stream m

8
<< tag

Standard input comes from here through next tag at the start of line

9
|

Takes output from one program, or process, and sends it to another

Note that the file descriptor 0 is normally standard input (STDIN), 1 is

standard output (STDOUT), and 2 is standard error output (STDERR).

Name of Faculty . Mr Santosh Kulkarni

Subject Networking

Programme:- BCA II Sem III

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of

Management Career Development and

Research.
156-B Railway Lines Solapur.

 Affilated PAH Solapur University

Network Models: Protocols & Standards,

• Network Protocols are a set of guidelines governing the exchange of information in a

simple, dependable and secure way. Network protocols are formal standards and policies

comprised of rules, methodology, and configurations that define communication between

two or more devices over a network. To effectively send and receive information, devices on

the two sides of a communication exchange must follow protocols

• The modern computer network is designed around the concept of layered protocols of

functions which meet the following goals

• 1) Provide a logical composition of a complex network in to smaller,more understandable

parts

• 2) provide for standard interfaces between network functions for example standard

interfaces between software program modules

• 3)Provide fpr symmetryin functions performed at each node in the network , Each layer

performs the same functions as its counterpart in other nodes of the network

• 4) Provide a standard language to clarify communications between among network

designers, vendors and users

Design Issues of Layers

• Networks require the writing of hundreds of software programs. Such complex systems have

bugs which is difficuilt to find and solve

• During the past several years as networks have grown in size and complexity the supporting

communications software ,hardware have grown in size and function. Network maintenance

has often experienced serious problems when changes were made that resulted in

unpredictable consequences.

• Many networks have evolved without any standards by which to design them. The

components within the network system sometimes have had poorly defined interfaces.

• The vendors apporach to designing systems has been another major problem in networks.

Each vendor had its own apporach to designining networks. Developing the hardware and

software for the networks and estblishing how end user interfaces were intigrated into the

networks . So each vendor provided different and unique approach The basic idea of

common standards is to develop a core of approaches among all vendors and to provide

reliable network to all users

• Services Primitives

• In layered protocols a layer is service provider and may contain of several service functions.

A function is a subsystem of a layer. Each subsystem may also be made up of entities. A

entity is a specialized module of a layer or subsystem.

• The diagram shows four transactions called primitives are invoked to and from the layer

through identifiers called service access points

• 1) Request :- Primitive by service user to invoke a function.

• 2) Indication Primitive by service provider to invoke a function or indicate a function has

been invoked at a service acess point

• 3) Response:- Primitive by service user to complete a function previouly invoked by an

indication at that SAP

• Confirm:- Primitive by service provider to complete a function previously invoked by a

request at that SAP.

• The following diagram shows a user application invokes a service provider function by

sending a request to the next lower layer . This service request is affirmed by the service

provider returning a confirm. If the service is going to provide a function for another user B

,the service provider must send an indication to B is required to provide response.In a

second diagram The service provider is in the middle of the diagram , with users A and B on

each side. The request is sent to the service provider which sends user B an indication . User

B provides a response which is transmited through the service provider as a confirm to A

•

Connection oriented and connection less services

• Both Connection-oriented service and Connection-less service are used for the connection

establishment between two or more than two devices. These type of services are offered by

network layer. Connection-oriented service is related to the telephone system. It includes

the connection establishment and connection termination. In connection-oriented service,

Handshake method is used to establish the connection between sender and receiver.

•

• Connection-less service is related to the postal system. It does not include any connection

establishment and connection termination. Connection-less Service does not give the

guarantee of reliability. In this, Packets do not follow same path to reach destination.

ISO-OSI reference model

• Reference Model offers a means of standardization which is acceptable worldwide. Since

people using the computer network are located over a wide physical range and their

network devices might have heterogeneous architecture. In order to provide communication

among heterogeneous devices, we need a standardized model i.e. a reference model, which

would provide us way how these devices can communicate regardless their architecture.

• We have two reference models such as OSI model and TCP/IP reference model, however,

the OSI model is a hypothetical one but the TCP/IP is absolutely practical model.

• OSI is acronym of Open System Interface. This model is developed by the International

organization of Standardization (ISO) and therefore also referred as ISO-OSI Model.

• The OSI model consists of seven layers as shown in the following diagram. Each layer has a

specific function, however each layer provide services to the layer above.

• Physical Layer

• The Physical layer is responsible for the following activities:

• Activating, maintaining and deactivating the physical connection.

• Defining voltages and data rates needed for transmission.

• Converting digital bits into electrical signal.

• Deciding whether the connection is simplex, half duplex or full duplex.

• Data Link Layer

• The data link layer performs the following functions:

• Performs synchronization and error control for the information which is to be transmitted

over the physical link.

• Enables error detection, and adds error detection bits to the data which are to be

transmitted.

• Network Layer

• Following are the functions of Network Layer:

• To route the signals through various channels to the other end.

• To act as the network controller by deciding which route data should take.

To divide the outgoing messages into packets and to assemble incoming packets into messages for

higher levels

• Transport Layer

• The Transport layer performs the following functions:

• It decides if the data transmission should take place on parallel paths or single path.

• It performs multiplexing, splitting on the data.

• It breaks the data groups into smaller units so that they are handled more efficiently by the

network layer.

• Session Layer

• The Session layer performs the following functions:

• Manages the messages and synchronizes conversations between two different applications.

• It controls logging on and off, user identification, billing and session management.

• Presentation Layer

• The Presentation layer performs the following functions:

• This layer makes it sure that the information is delivered in such a form that the receiving

system will understand and use it.

• Application Layer

• The Application layer performs the following functions:

• It provides different services such as manipulation of information in several ways,

retransferring the files of information, distributing the results etc.

• The functions such as LOGIN or password checking are also performed by the application

layer.

TCP/IP reference model

• The OSI Model we just looked at is just a reference/logical model. It was designed to

describe the functions of the communication system by dividing the communication

procedure into smaller and simpler components. But when we talk about the TCP/IP model,

it was designed and developed by Department of Defense (DoD) in 1960s and is based on

standard protocols. It stands for Transmission Control Protocol/Internet Protocol.

The TCP/IP model is a concise version of the OSI model. It contains four layers, unlike seven

layers in the OSI model. The layers are:

• Process/Application Layer

• Host-to-Host/Transport Layer

• Internet Layer

• Network Access/Link Layer

• Network Access Layer –

• This layer corresponds to the combination of Data Link Layer and Physical Layer of the OSI

model. It looks out for hardware addressing and the protocols present in this layer allows for

the physical transmission of data.

• We just talked about ARP being a protocol of Internet layer, but there is a conflict about

declaring it as a protocol of Internet Layer or Network access layer. It is described as residing

in layer 3, being encapsulated by layer 2 protocols.

• 2. Internet Layer –

• This layer parallels the functions of OSI’s Network layer. It defines the protocols which are

responsible for logical transmission of data over the entire network. The main protocols

residing at this layer are :

• IP – stands for Internet Protocol and it is responsible for delivering packets from the source

host to the destination host by looking at the IP addresses in the packet headers. IP has 2

versions:

• IPv4 and IPv6. IPv4 is the one that most of the websites are using currently. But IPv6 is

growing as the number of IPv4 addresses are limited in number when compared to the

number of users.

• ICMP – stands for Internet Control Message Protocol. It is encapsulated within IP datagrams

and is responsible for providing hosts with information about network problems.

• ARP – stands for Address Resolution Protocol. Its job is to find the hardware address of a

host from a known IP address. ARP has several types: Reverse ARP, Proxy ARP, Gratuitous

ARP and Inverse ARP.

• 3. Host-to-Host Layer –

• This layer is analogous to the transport layer of the OSI model. It is responsible for end-to-

end communication and error-free delivery of data. It shields the upper-layer applications

from the complexities of data. The two main protocols present in this layer are :

• Transmission Control Protocol (TCP) – It is known to provide reliable and error-free

communication between end systems. It performs sequencing and segmentation of data. It

also has acknowledgment feature and controls the flow of the data through flow control

mechanism. It is a very effective protocol but has a lot of overhead due to such features.

Increased overhead leads to increased cost.

• User Datagram Protocol (UDP) – On the other hand does not provide any such features. It is

the go-to protocol if your application does not require reliable transport as it is very cost-

effective. Unlike TCP, which is connection-oriented protocol, UDP is connectionless.

• 4. Application Layer –

• This layer performs the functions of top three layers of the OSI model: Application,

Presentation and Session Layer. It is responsible for node-to-node communication and

controls user-interface specifications. Some of the protocols present in this layer are: HTTP,

HTTPS, FTP, TFTP, Telnet, SSH, SMTP, SNMP, NTP, DNS, DHCP, NFS, X Window, LPD. Have a

look at Protocols in Application Layer for some information about these protocols. Protocols

other than those present in the linked article are :

• HTTP and HTTPS – HTTP stands for Hypertext transfer protocol. It is used by the World Wide

Web to manage communications between web browsers and servers. HTTPS stands for

HTTP-Secure. It is a combination of HTTP with SSL(Secure Socket Layer). It is efficient in cases

where the browser need to fill out forms, sign in, authenticate and carry out bank

transactions.

• SSH – SSH stands for Secure Shell. It is a terminal emulations software similar to Telnet. The

reason SSH is more preferred is because of its ability to maintain the encrypted connection.

It sets up a secure session over a TCP/IP connection.

• NTP – NTP stands for Network Time Protocol. It is used to synchronize the clocks on our

computer to one standard time source. It is very useful in situations like bank transactions.

Assume the following situation without the presence of NTP. Suppose you carry out a

transaction, where your computer reads the time at 2:30 PM while the server records it at

2:28 PM. The server can crash very badly if it’s out of sync.

Thank You !!!

Any Queries
9420779969/kulkarnisantosh5

273

@gmail.com

 Mrs. Snehal Pathak 11

Name of Faculty . Mr Santosh Kulkarni

Subject Cryptography

Programme:- BCAIII Sem VI

1

S.P. Mandali Pune

Prin. K. P. Mangalvedhekar Institute of Management

Career Development and Research.
156-B Railway Lines Solapur

Affilated PAH Solapur University

.

Cryptogrphy

• IT is technique of securing information and communications
through use of codes so that only those person for whom the
information is intended can understand it and process it. Thus
preventing unauthorized access to information. The prefix “crypt”
means “hidden” and suffix graphy means “writing”.

• In Cryptography the techniques which are use to protect
information are obtained from mathematical concepts and a set of
rule based calculations known as algorithms to convert messages in
ways that make it hard to decode it. These algorithms are used for
cryptographic key generation, digital signing, verification to protect
data privacy, web browsing on internet and to protect confidential
transactions such as credit card and debit card transactions.

Techniques used For Cryptography:

• In today’s age of computers cryptography is

often associated with the process where an

ordinary plain text is converted to cipher text

which is the text made such that intended

receiver of the text can only decode it and

hence this process is known as encryption.

The process of conversion of cipher text to

plain text this is known as decryption.

Features Of Cryptography are as

follows:
• Confidentiality:

Information can only be accessed by the person for whom
it is intended and no other person except him can access it.

• Integrity:
Information cannot be modified in storage or transition
between sender and intended receiver without any
addition to information being detected.

• Non-repudiation:
The creator/sender of information cannot deny his or her
intention to send information at later stage.

• Authentication:
The identities of sender and receiver are confirmed. As well
as destination/origin of information is confirmed.

• Types Of Cryptography:
In general there are three types Of cryptography:

• Symmetric Key Cryptography:
It is an encryption system where the sender and
receiver of message use a single common key to
encrypt and decrypt messages. Symmetric Key
Systems are faster and simpler but the problem is
that sender and receiver have to somehow
exchange key in a secure manner. The most
popular symmetric key cryptography system is
Data Encryption System(DES).

• Asymmetric Key Cryptography:

Under this system a pair of keys is used to

encrypt and decrypt information. A public key

is used for encryption and a private key is used

for decryption. Public key and Private Key are

different. Even if the public key is known by

everyone the intended receiver can only

decode it because he alone knows the private

key.

• Hash Functions:

There is no usage of any key in this algorithm.

A hash value with fixed length is calculated as

per the plain text which makes it impossible

for contents of plain text to be recovered.

Many operating systems use hash functions to

encrypt passwords.

Security goals

• n present day scenario security of the system is the
sole priority of any organisation. The main aim of any
organisation is to protect their data from attackers.
In cryptography, attacks are of two types such
as Passive attacks and Active attacks.

• Passive attacks are those that retrieve information
from the system without affecting the system
resources while active attacks are those that retrieve
system information and make changes to the system
resources and their operations.

https://www.geeksforgeeks.org/computer-network-cryptography-introduction/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/
https://www.geeksforgeeks.org/difference-between-active-attack-and-passive-attack/

• The Principles of Security can be classified as follows:
• Confidentiality:

The degree of confidentiality determines the secrecy of
the information. The principle specifies that only the
sender and receiver will be able to access the
information shared between them. Confidentiality
compromises if an unauthorized person is able to
access a message. For example, let us consider sender
A wants to share some confidential information with
receiver B and the information gets intercepted by the
attacker C. Now the confidential information is in the
hands of an intruder C.

• Authentication:

Authentication is the mechanism to identify

the user or system or the entity. It ensures the

identity of the person trying to access the

information. The authentication is mostly

secured by using username and password. The

authorized person whose identity is

preregistered can prove his/her identity and

can access the sensitive information.

• Integrity:

Integrity gives the assurance that the

information received is exact and accurate. If

the content of the message is changed after

the sender sends it but before reaching the

intended receiver, then it is said that the

integrity of the message is lost.

• Non-Repudiation:

Non-repudiation is a mechanism that prevents

the denial of the message content sent

through a network. In some cases the sender

sends the message and later denies it. But the

non-repudiation does not allow the sender to

refuse the receiver.

• Access control:

The principle of access control is determined

by role management and rule management.

Role management determines who should

access the data while rule management

determines up to what extent one can access

the data. The information displayed is

dependent on the person who is accessing it.

• Availability:

The principle of availability states that the

resources will be available to authorize party

at all times. Information will not be useful if it

is not available to be accessed. Systems should

have sufficient availability of information to

satisfy the user request.

Cryptographic Attacks,

• Cryptology has two parts namely, Cryptography which
focuses on creating secret codes
and Cryptanalysis which is the study of the
cryptographic algorithm and the breaking of those
secret codes. The person practicing Cryptanalysis is
called a Cryptanalyst. It helps us to better understand
the cryptosystems and also helps us improve the
system by finding any weak point and thus work on the
algorithm to create a more secure secret code. For
example, a Cryptanalyst might try to decipher a
ciphertext to derive the plaintext. It can help us to
deduce the plaintext or the encryption key.

• To determine the weak points of a cryptographic

system, it is important to attack the system. This

attacks are called Cryptanalytic attacks. The

attacks rely on nature of the algorithm and also

knowledge of the general characteristics of the

plaintext, i.e., plaintext can be a regular

document written in English or it can be a code

written in Java. Therefore, nature of the plaintext

should be known before trying to use the attacks.

• Known-Plaintext Analysis (KPA) :

• In this type of attack, some plaintext-ciphertext pairs
are already known. Attacker maps them in order to find
the encryption key. This attack is easier to use as a lot
of information is already available.

• Chosen-Plaintext Analysis (CPA) :

• In this type of attack, the attacker chooses random
plaintexts and obtains the corresponding ciphertexts
and tries to find the encryption key. Its very simple to
implement like KPA but the success rate is quite low.

• Ciphertext-Only Analysis (COA) :

• In this type of attack, only some cipher-text is known and
the attacker tries to find the corresponding encryption key
and plaintext. Its the hardest to implement but is the most
probable attack as only ciphertext is required.

• Man-In-The-Middle (MITM) attack :

• In this type of attack, attacker intercepts the message/key
between two communicating parties through a secured
channel.

• Adaptive Chosen-Plaintext Analysis (ACPA) :

• This attack is similar CPA. Here, the attacker requests the
cipher texts of additional plaintexts after they have
ciphertexts for some texts.

• To determine the weak points of a cryptographic

system, it is important to attack the system. This

attacks are called Cryptanalytic attacks. The

attacks rely on nature of the algorithm and also

knowledge of the general characteristics of the

plaintext, i.e., plaintext can be a regular

document written in English or it can be a code

written in Java. Therefore, nature of the plaintext

should be known before trying to use the attacks.

• Known-Plaintext Analysis (KPA) :

In this type of attack, some plaintext-ciphertext pairs
are already known. Attacker maps them in order to find
the encryption key. This attack is easier to use as a lot
of information is already available.

• Chosen-Plaintext Analysis (CPA) :

In this type of attack, the attacker chooses random
plaintexts and obtains the corresponding ciphertexts
and tries to find the encryption key. Its very simple to
implement like KPA but the success rate is quite low.

• Ciphertext-Only Analysis (COA) :
In this type of attack, only some cipher-text is known and
the attacker tries to find the corresponding encryption key
and plaintext. Its the hardest to implement but is the most
probable attack as only ciphertext is required.

• Man-In-The-Middle (MITM) attack :
In this type of attack, attacker intercepts the message/key
between two communicating parties through a secured
channel.

• Adaptive Chosen-Plaintext Analysis (ACPA) :
This attack is similar CPA. Here, the attacker requests the
cipher texts of additional plaintexts after they have
ciphertexts for some texts.

Non Cryptanalytic Attacks

• Masquerade –

Masquerade attack takes place when one

entity pretends to be different entity. A

Masquerade attack involves one of the other

form of active attacks.

• Repudiation –

This attack is done by either sender or receiver. The
sender or receiver can deny later that he/she has send
or receive a message. For example, customer ask his
Bank “To transfer an amount to someone” and later on

the sender(customer) deny that he had made such a
request. This is repudiation.

• Replay –

It involves the passive capture of a message and its
subsequent the transmission to produce an authorized
effect.

• Denial of Service –

It prevents normal use of communication

facilities. This attack may have a specific

target. For example, an entity may suppress all

messages directed to a particular destination.

Another form of service denial is the

disruption of an entire network wither by

disabling the network or by overloading it by

messages so as to degrade performance.

• Traffic analysis –
Suppose that we had a way of masking
(encryption) of information, so that the attacker
even if captured the message could not extract
any information from the message.
The opponent could determine the location and
identity of communicating host and could
observe the frequency and length of messages
being exchanged. This information might be
useful in guessing the nature of the
communication that was taking place.

• Snooping

• Snooping refers to unauthorized access to or

interception of data .for example a file

transferred through the internet may contain

confidential in formation. An unauthorized

entity may intercept the transformation and

use the contents for her own benefit.

Services and mechanism

• ITU-T provides some security services and

some mechanisms to implement those

services.

• Security services and mechanisms are closely

related because a mechanism or combination

of mechanisms are used to provide a service

Security Services

• Authentication: assures recipient that the message is
from the source that it claims to be from.

• Access Control: controls who can have access to
resource under what condition

• Availability: available to authorized entities for 24/7.

• Confidentiality: information is not made available to
unauthorized individual

• Integrity: assurance that the message is unaltered

• Non-Repudiation: protection against denial of sending
or receiving in the communication

• Confidentiality:
The degree of confidentiality determines the
secrecy of the information. The principle specifies
that only the sender and receiver will be able to
access the information shared between them.
Confidentiality compromises if an unauthorized
person is able to access a message. For example,
let us consider sender A wants to share some
confidential information with receiver B and the
information gets intercepted by the attacker C.
Now the confidential information is in the hands
of an intruder C

• Authentication:

Authentication is the mechanism to identify

the user or system or the entity. It ensures the

identity of the person trying to access the

information. The authentication is mostly

secured by using username and password. The

authorized person whose identity is

preregistered can prove his/her identity and

can access the sensitive information.

• Integrity:

Integrity gives the assurance that the

information received is exact and accurate. If

the content of the message is changed after

the sender sends it but before reaching the

intended receiver, then it is said that the

integrity of the message is lost.

• Non-Repudiation:

Non-repudiation is a mechanism that prevents

the denial of the message content sent

through a network. In some cases the sender

sends the message and later denies it. But the

non-repudiation does not allow the sender to

refuse the receiver.

• Access control:

The principle of access control is determined

by role management and rule management.

Role management determines who should

access the data while rule management

determines up to what extent one can access

the data. The information displayed is

dependent on the person who is accessing it.

Security Mechanisms

• is field in computer technology that deals with
ensuring security of computer network
infrastructure. As the network is very necessary
for sharing of information whether it is at
hardware level such as printer, scanner, or at
software level. Therefore security mechanism can
also be termed as is set of processes that deal
with recovery from security attack. Various
mechanisms are designed to recover from these
specific attacks at various protocol layers.

• Types of Security Mechanism are :
• Encipherment :

This security mechanism deals with hiding and covering of
data which helps data to become confidential. It is achieved
by applying mathematical calculations or algorithms which
reconstruct information into not readable form. It is
achieved by two famous techniques named Cryptography
and Encipherment. Level of data encryption is dependent
on the algorithm used for encipherment.

• Access Control :
This mechanism is used to stop unattended access to data
which you are sending. It can be achieved by various
techniques such as applying passwords, using firewall, or
just by adding PIN to data.

• Notarization :
This security mechanism involves use of trusted third party in
communication. It acts as mediator between sender and receiver so
that if any chance of conflict is reduced. This mediator keeps record
of requests made by sender to receiver for later denied.

• Data Integrity :
This security mechanism is used by appending value to data to
which is created by data itself. It is similar to sending packet of
information known to both sending and receiving parties and
checked before and after data is received. When this packet or data
which is appended is checked and is the same while sending and
receiving data integrity is maintained.

• Authentication exchange :
This security mechanism deals with identity to be known in
communication. This is achieved at the TCP/IP layer where two-way
handshaking mechanism is used to ensure data is sent or not

• Digital Signature :

This security mechanism is achieved by adding

digital data that is not visible to eyes. It is form

of electronic signature which is added by

sender which is checked by receiver

electronically. This mechanism is used to

preserve data which is not more confidential

but sender’s identity is to be notified.

Thank You !!!

Any Queries
9420779969/kulkarnisantosh5273

@gmail.com

 Mrs. Snehal Pathak 50

Introduction of
AngularJS

By Rapelli Shrushti

Objective

To understand basics of angular,directives and expression

Overview of AngularJS

What is AngularJS?, Why AngularJS?
 Angular JS is an open source JavaScript framework to build web

applications. It can be freely used, changed and shared by anyone.

 Angular Js is developed by Google.

 It is an excellent framework for building single phase applications and line of
business applications.

 It was originally developed in 2009 by Misko Hevery and Adam Abrons.

 Its latest version is 1.2.21.

 Its data binding and dependency injection eliminate much of the code you
currently have to write. And it all happens within the browser, making it an
ideal partner with any server technology.

Features of AngularJS
 The core features of AngularJS are as follows −

Data-binding − It is the automatic synchronization of data between model and view components.

Scope − These are objects that refer to the model. They act as a glue between controller and view.

Controller − These are JavaScript functions bound to a particular scope.

Services − AngularJS comes with several built-in services such as $http to make a XMLHttpRequests.
These are singleton objects which are instantiated only once in app.

Filters − These select a subset of items from an array and returns a new array.

Directives − Directives are markers on DOM elements such as elements, attributes, css, and more.
These can be used to create custom HTML tags that serve as new, custom widgets. AngularJS has built-in
directives such as ngBind, ngModel, etc.

Templates − These are the rendered view with information from the controller and model. These can
be a single file (such as index.html) or multiple views in one page using partials.

Routing − It is concept of switching views.

Model View Whatever − MVW is a design pattern for dividing an application into different parts called
Model, View, and Controller, each with distinct responsibilities. AngularJS does not implement MVC in the
traditional sense, but rather something closer to MVVM (Model-View-ViewModel). The Angular JS team
refers it humorously as Model View Whatever.

Deep Linking − Deep linking allows to encode the state of application in the URL so that it can be
bookmarked. The application can then be restored from the URL to the same state.

Dependency Injection − AngularJS has a built-in dependency injection subsystem that helps the
developer to create, understand, and test the applications easily.

AngularJS architecture
 Angular.js follows the MVC architecture, the diagram of the MVC framework

as shown below.

Angularjs Architecture Diagram

Controller

View

Model

 The Controller represents the layer that has the business logic. User events
trigger the functions which are stored inside your controller. The user events
are part of the controller.

 Views are used to represent the presentation layer which is provided to the
end users

 Models are used to represent your data. The data in your model can be as
simple as just having primitive declarations. For example, if you are
maintaining a student application, your data model could just have a student
id and a name. Or it can also be complex by having a structured data model. If
you are maintaining a car ownership application, you can have structures to
define the vehicle itself in terms of its engine capacity, seating capacity, etc.

AngularJS Advantages

 Since it's an open source framework, you can expect the number of errors or issues to be
minimal.

 Two-way binding – Angular.js keeps the data and presentation layer in sync. Now you don't
need to write additional JavaScript code to keep the data in your HTML code and your data
later in sync. Angular.js will automatically do this for you. You just need to specify which
control is bound to which part of your model.

 Routing – Angular can take care of routing which means moving from one view to another.
This is the key fundamental of single page applications; wherein you can move to different
functionalities in your web application based on user interaction but still stay on the same
page.

 Angular supports testing, both Unit Testing, and Integration Testing.

 It extends HTML by providing its own elements called directives. At a high level, directives are
markers on a DOM element (such as an attribute, element name, and comment or CSS class)
that tell AngularJS's HTML compiler to attach a specified behavior to that DOM element. These
directives help in extending the functionality of existing HTML elements to give more power to
your web application.

Setting up the Environment
 When you open the link https://angularjs.org/, you will see there are two

options to download AngularJS library:

1. View on GitHub – By clicking on this button, you are diverted to GitHub and
get all the latest scripts.

2. Download – By clicking on this button, a screen you get to see a dialog box

3. Then We can go with the minimized, uncompressed, or zipped version.

4. We extract it then we get CDN access.

5. Copy angular.min.js and paste to your folder where ur programs saved.

My first AngularJS app
<html>

<title>AngularJS First Application</title>

<body>

<h1>Sample Application</h1>

<div ng-app="">

<p>Enter your Name: <input type="text" ng-model="name"></p>

<p>Hello !</p>

</div>

<script src="angular.min.js">

</script>

</body>

</html>

Directives

Introduction to Directives
 AngularJS facilitates you to extend HTML with new attributes. These attributes

are called directives.
 There is a set of built-in directive in AngularJS which offers functionality to your

applications. You can also define your own directives.
 AngularJS directives are used to extend HTML. They are special attributes

starting with ng-prefix.
 Following are the most common directives:
1. ng-app − This directive starts an AngularJS Application.

2. ng-init − This directive initializes application data.

3. ng-model − This directive defines the model that is variable to be used in
AngularJS.

4. ng-repeat − This directive repeats HTML elements for each item in a
collection.

Directive lifecycle
 The three phases of the life cycle of an AngularJS application happen each time a web page is

loaded in the browser. The following sections describe these phases of an AngularJS application.

The Bootstrap Phase

 The first phase of the AngularJS life cycle is the bootstrap phase, which occurs when the AngularJS
JavaScript library is downloaded to the browser. AngularJS initializes its own necessary components
and then initializes your module, which the ng-app directive points to. The module is loaded, and
any dependencies are injected into your module and made available to code within the module.

The Compilation Phase

 The second phase of the AngularJS life cycle is the HTML compilation stage. Initially when a web
page is loaded, a static form of the DOM is loaded in the browser. During the compilation phase, the
static DOM is replaced with a dynamic DOM that represents the AngularJS view.

 This phase involves two parts: traversing the static DOM and collecting all the directives and then
linking the directives to the appropriate JavaScript functionality in the AngularJS built-in library or
custom directive code. The directives are combined with a scope to produce the dynamic or live
view.

The Runtime Data Binding Phase

 The final phase of the AngularJS application is the runtime phase, which exists until the user
reloads or navigates away from a web page. At that point, any changes in the scope are reflected in
the view, and any changes in the view are directly updated in the scope, making the scope the
single source of data for the view.

 AngularJS behaves differently from traditional methods of binding data. Traditional methods
combine a template with data received from the engine and then manipulate the DOM each time
the data changes. AngularJS compiles the DOM only once and then links the compiled template as
necessary, making it much more efficient than traditional methods.

Using AngularJS built-in directives
For in detail,visit-https://www.javatpoint.com/angularjs-directives

1. Core Directives

ng-app directive

 The ng-app directive starts an AngularJS Application. It defines the root element. It automatically
initializes or bootstraps the application when the web page containing AngularJS Application is
loaded. It is also used to load various AngularJS modules in AngularJS Application. In the following
example, we define a default AngularJS application using ng-app attribute of a <div> element.

<div ng-app = "">

...

</div>

 ng-init directive

The ng-init directive initializes an AngularJS Application data. It is used to assign values to the
variables. In the following example, we initialize an array of countries. We use JSON syntax to define
the array of countries.

<div ng-app = "" ng-init = "countries = [{locale:'en-US',name:'United States'},

{locale:'en-GB',name:'United Kingdom'}, {locale:'en-FR',name:'France'}]">

...

</div>

 ng-model directive

The ng-model directive defines the model/variable to be used in AngularJS Application. In the following
example, we define a model named name.

<div ng-app = "">

...

<p>Enter your Name: <input type = "text" ng-model = "name"></p>

</div>

 ng-repeat directive

The ng-repeat directive repeats HTML elements for each item in a collection. In the following example,
we iterate over the array of countries.

<div ng-app = "">

...

<p>List of Countries with locale:</p>

<li ng-repeat = "country in countries">

{{ 'Country: ' + country.name + ', Locale: ' + country.locale }}

</div>

 ng-model

<!DOCTYPE html>

<html >

<head>

<script src="angular.min.js"></script>

</head>

<body ng-app>

<input type="text" ng-model="name" />

<div>

Hello {{name}}

</div>

</body>

</html>

 ng-init

<!DOCTYPE html>

<html >

<head>

<script src="angular.min.js"></script>

</head>

<body >

<div ng-app ng-init="greet='Hello World!'; amount= 100; myArr = [100, 200]; person = {
firstName:'Steve', lastName :'Jobs'}">

{{amount}}

{{myArr[1]}}

{{person.firstName}}

</div>

</body>

</html>

 ng-repeat

<!DOCTYPE html>

<html>

<head>

<script src="angular.min.js"></script>

<style>

div {

border: 1px solid green;

width: 100%;

height: 50px;

display: block;

margin-bottom: 10px;

text-align:center;

background-color:yellow;

}

</style>

</head>

<body ng-app="" ng-init="students=['Bill','Steve','Ram']">

<li ng-repeat="name in students">

{{name}}

<div ng-repeat="name in students">

{{name}}

</div>

</body>

</html>

Conditional Directives
The ng-if directive removes the HTML element if the expression evaluates to false.

If the if statement evaluates to true, a copy of the Element is added in the DOM.

Syntax

<element ng-if="expression"></element>

Eg-

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body ng-app="">

Keep HTML: <input type="checkbox" ng-model="myVar" ng-init="myVar = true">

<div ng-if="myVar">

<h1>Welcome</h1>

<p>Welcome to my home.</p>

<hr>

</div>

<p>The DIV element will be removed when the checkbox is not checked.</p>

<p>The DIV element will return, if you check the checkbox.</p>

</body>

</html>

Style Directives
 The ng-style directive specifies the style attribute for the HTML element.

 The value of the ng-style attribute must be an object, or an expression returning an object.

 The object consists of CSS properties and values, in key value pairs.

Syntax

<element ng-style="expression"></element>

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body ng-app="myApp" ng-controller="myCtrl">

<h1 ng-style="myObj">Welcome</h1>

<script>

var app = angular.module("myApp", []);

app.controller("myCtrl", function($scope) {

$scope.myObj = {

"color" : "white",

"background-color" : "coral",

"font-size" : "60px",

"padding" : "50px"

}

});

</script>

</body>

</html>

Mouse and Keyboard Events Directives
Mouse Events

Mouse events occur when the cursor moves over an element, in this order:

ng-mouseover

ng-mouseenter

ng-mousemove

ng-mouseleave

Or when a mouse button is clicked on an element, in this order:

ng-mousedown

ng-mouseup

ng-click

You can add mouse events on any HTML element

Eg

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body>

<div ng-app="myApp" ng-controller="myCtrl">

<h1 ng-mousemove="count = count + 1">Mouse Over Me!</h1>

<h2>{{ count }}</h2>

</div>

<script>

var app = angular.module('myApp', []);

app.controller('myCtrl', function($scope) {

$scope.count = 0;

});

</script>

</body>

</html>

In detail visit-https://www.w3schools.com/angular/angular_events.asp

Keyevents

The ng-keypress directive tells AngularJS what to do when the keyboard is used
on the specific HTML element.

The ng-keypress directive from AngularJS will not override the element's original
onkeypress event, both will be executed.

The order of a key stroke is:

1. Keydown

2. Keypress

3. Keyup

Syntax

<element ng-keypress="expression"></element>

Supported by <input>, <select>, <textarea>, and other editable elements.

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body ng-app="">

<input ng-keypress="count = count + 1" ng-init="count=0" />

<h1>{{count}}</h1>

<p>This example will increase the value of the variable "count" every time a key is
pressed in the input field.</p>

</body>

</html>

Matching directives
The ng-switch directive lets you hide/show HTML elements depending on an
expression.

Child elements with the ng-switch-when directive will be displayed if it gets a
match, otherwise the element, and its children will be removed.

You can also define a default section, by using the ng-switch-default directive, to
show a section if none of the other sections get a match.

Syntax

<element ng-switch="expression">

<element ng-switch-when="value"></element>

<element ng-switch-when="value"></element>

<element ng-switch-when="value"></element>

<element ng-switch-default></element>

</element>

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body ng-app="">

My favorite topic is:

<select ng-model="myVar">

<option value="dogs">Dogs

<option value="tuts">Tutorials

<option value="cars">Cars

</select><hr>

<div ng-switch="myVar">

<div ng-switch-when="dogs">

<h1>Dogs</h1>

<p>Welcome to a world of dogs.</p> </div>

<div ng-switch-when="tuts">

<h1>Tutorials</h1>

<p>Learn from examples.</p> </div>

<div ng-switch-when="cars">

<h1>Cars</h1>

<p>Read about cars.</p> </div>

<div ng-switch-default>

<h1>Switch</h1>

<p>Select topic from the dropdown, to switch the content of this DIV.</p> </div>

</div>

<hr>

</body>

</html>

Creating a custom directive
 In addition to all the built-in AngularJS directives, you can create your own

directives.

 New directives are created by using the .directive function.

 To invoke the new directive, make an HTML element with the same tag
name as the new directive.

 When naming a directive, you must use a camel case name, w3TestDirective,
but when invoking it, you must use - separated name, w3-test-directive:

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body ng-app="myApp">

<w3-test-directive></w3-test-directive>

<script>

var app = angular.module("myApp", []);

app.directive("w3TestDirective", function() {

return {

template : "<h1>Made by a directive!</h1>"

};

});

</script>

</body>

</html>

Angular Expression

All about Angular expressions
 AngularJS expressions can be written inside double braces: {{ expression }}.

 AngularJS expressions can also be written inside a directive: ng-
bind="expression".

 AngularJS will resolve the expression, and return the result exactly where
the expression is written.

 AngularJS expressions are much like JavaScript expressions: They can
contain literals, operators, and variables.

How to use expressions
 Example {{ 5 + 5 }} or {{ firstName + " " + lastName }}

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body>

<div ng-app>

<p>My first expression: {{ 5 + 5 }}</p>

</div>

</body>

</html>

Number
<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body>

<div ng-app="" ng-init="quantity=1;cost=5">

<p>Total in dollar: {{ quantity * cost }}</p>

</div>

</body>

</html>

String Expressions
<!DOCTYPE html>
<html>
<script src="angular.min.js"></script>
<body>

<div ng-app="" ng-init="firstName='John';lastName='Doe'">

<p>The full name is: {{ firstName + " " + lastName }}</p>

</div>

</body>
</html>

Object Binding and Expressions
Scope is a special JavaScript object that connects controller with views. Scope contains model data.

Data binding in AngularJS is the synchronization between the model and the view.

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body>

<div ng-app="myApp" ng-controller="myCtrl">

<p ng-bind="firstname"></p>

</div>

<script>

var app = angular.module('myApp', []);

app.controller('myCtrl', function($scope) {

$scope.firstname = "John";

$scope.lastname = "Doe";

});

</script>

<p>Use the ng-bind directive to bind the innerHTML of an element to a property in the data model.</p>

</body>

</html>

Working with Arrays
 The ng-repeat directive repeats a set of HTML, a given number of times.

 The set of HTML will be repeated once per item in a collection.

 The collection must be an array or an object.

 Note: Each instance of the repetition is given its own scope, which consist of
the current item.

 If you have an collection of objects, the ng-repeat directive is perfect for
making a HTML table, displaying one table row for each object, and one
table data for each object property. See example below.

 Syntax

<element ng-repeat="expression"></element>

<!DOCTYPE html>

<html>

<script src="angular.min.js"></script>

<body ng-app="myApp" ng-controller="myCtrl">

<h1 ng-repeat="x in records">{{x}}</h1>

<script>

var app = angular.module("myApp", []);

app.controller("myCtrl", function($scope) {

$scope.records = [

"Alfreds Futterkiste",

"Berglunds snabbköp",

"Centro comercial Moctezuma",

"Ernst Handel",

]

});

</script>

</body>

</html>

Forgiving Behavior
AngularJS modifies the default behavior of some HTML elements.

Element Description

a AngularJS modifies the <a> element's default behaviors.

form AngularJS modifies the <form> element's default behaviors.

input AngularJS modifies the <input> element's default behaviors.

script AngularJS modifies the <script> element's default behaviors.

select AngularJS modifies the <select> element's default behaviors.

textarea AngularJS modifies the <textarea> element's default behaviors.

Angular expressions v/s Javascript
expressions
 Like JavaScript expressions, AngularJS expressions can contain literals,

operators, and variables.

 Unlike JavaScript expressions, AngularJS expressions can be written inside
HTML.

 AngularJS expressions do not support conditionals, loops, and exceptions,
while JavaScript expressions do.

 AngularJS expressions support filters, while JavaScript expressions do not.

What is PHP?

PHP is a server side scripting language. that is used to develop Static websites or

Dynamic websites or Web applications. PHP stands for Hypertext Pre-processor, that

earlier stood for Personal Home Pages.

Client-Side Scripting and Server-Side Scripting

Learn about Server-side and Client-side programming.

Introduction

Many websites out there use Server-side programming and Client-side programming for

various functionalities. We can take the example of Scaler.com only. The static User

Interface (UI) that can be seen by the user is developed using Client-side programming.

Refer to the image below.

 What is Website?
Website is the collection of web pages, different multimedia content such as
text, images, and videos which can be accessed by the URL which you can see
in the address bar of the browser. For example: https://www.geeksforgeeks.org
How to access Websites?
When we type a certain URL in a browser search bar, the browser requests the
page from the Web server and the Web server returns the required web page
and its content to the browser. Now, it differs how the server returns the
information required in the case of static and dynamic websites.
Types of Website:
• Static Website
• Dynamic Website
Static Website: In Static Websites, Web pages are returned by the server
which are prebuilt source code files built using simple languages such as
HTML, CSS, or JavaScript. There is no processing of content on the server
(according to the user) in Static Websites. Web pages are returned by the
server with no change therefore, static Websites are fast. There is no
interaction with databases. Also, they are less costly as the host does not need
to support server-side processing with different languages.

Architecture of Static Website

Note: Static does not mean that it will not respond to user actions, These
Websites are called static because these cannot be manipulated on the server
or interact with databases (which is the case in Dynamic Websites).
Dynamic Website: In Dynamic Websites, Web pages are returned by the
server which are processed during runtime means they are not prebuilt web

https://www.geeksforgeeks.org/

pages but they are built during runtime according to the user’s demand with the
help of server-side scripting languages such as PHP, Node.js, ASP.NET and
many more supported by the server. So, they are slower than static websites
but updates and interaction with databases are possible.
Dynamic Websites are used over Static Websites as updates can be done very
easily as compared to static websites (Where altering in every page is required)
but in Dynamic Websites, it is possible to do a common change once and it will
reflect in all the web pages.

What Is Server-side Programming?

The execution of several programs on the back-end or specifically the servers, is said to be

Server-side programming or Server-side scripting. Many functionalities are added in the web

application for better user experience with the help of the programs that run on the backend.

Hence, this is also called Back-end Programming. The main question is why do we need server-

side or backend programming? Because when we deal with huge collections of data, we need

servers that have databases to store such a huge amount of data. Then server-side programs

are used to perform various operations on that data. In simple words, All the backend-code is

maintained on the servers.

Server-side Programming

In the above picture, you can see that the server is sending the response to the request made

by the client. By this request and response cycle, client and server communicate with each

other

PHP scripts can only be interpreted on a server that has PHP installed.

The client computers accessing the PHP scripts require a web browser only.

A PHP file contains PHP tags and ends with the extension “.php”.

In this tutorial, you will learn-

What is a Scripting Language?

Scripting VS Programming Language

What does PHP stand for?

PHP Syntax

Why use PHP?

What is PHP used for & Market share

PHP vs ASP.NET VS JSP VS CFML

PHP File Extensions

PHP Hello world

What is a Scripting Language?

A script is a set of programming instructions that is interpreted at runtime.

A scripting language is a language that interprets scripts at runtime. Scripts are usually

embedded into other software environments.

The purpose of the scripts is usually to enhance the performance or perform routine tasks for

an application.

Server side scripts are interpreted on the server while client side scripts are interpreted by the

client application.

PHP is a server side script that is interpreted on the server while JavaScript is an example of a

client side script that is interpreted by the client browser. Both PHP and JavaScript can be

embedded into HTML pages.

Programming Language Vs Scripting Language

Programming language Scripting language

Has all the features needed to develop complete applications. Mostly used for routine tasks

The code has to be compiled before it can be executed The code is usually executed without

compiling

Does not need to be embedded into other languages Is usually embedded into other

software environments.

What does PHP stand for?

PHP means – Personal Home Page, but it now stands for the recursive backronym PHP:

Hypertext Preprocessor.

PHP code may be embedded into HTML code, or it can be used in combination with various

web template systems, web content management system and web frameworks.

PHP Syntax

What is PHP? Write your first PHP Program

A PHP file can also contain tags such as HTML and client side scripts such as JavaScript.

HTML is an added advantage when learning PHP Language. You can even learn PHP without knowing

HTML but it’s recommended you at least know the basics of HTML.

Database management systems DBMS for database powered applications.

For more advanced topics such as interactive applications and web services, you will need JavaScript and

XML.

The flowchart diagram shown below illustrates the basic architecture of a PHP web application and how

the server handles the requests.

What is PHP? Write your first PHP Program

Why use PHP?

You have obviously heard of a number of programming languages out there; you may be wondering why

we would want to use PHP as our poison for the web programming. Below are some of the compelling

reasons.

PHP is open source and free.

Short learning curve compared to other languages such as JSP, ASP etc.

Large community document

Most web hosting servers support PHP by default unlike other languages such as ASP that need IIS. This

makes PHP a cost effective choice.

PHP is regular updated to keep abreast with the latest technology trends.

Other benefit that you get with PHP is that it’s a server side scripting language; this means you only

need to install it on the server and client computers requesting for resources from the server do not

need to have PHP installed; only a web browser would be enough.

PHP has in built support for working hand in hand with MySQL; this doesn’t mean you can’t use PHP

with other database management systems. You can still use PHP with

Postgres

Oracle

MS SQL Server

ODBC etc.

PHP is cross platform; this means you can deploy your application on a number of different operating

systems such as windows, Linux, Mac OS etc.

What is PHP used for & Market share

In terms of market share, there are over 20 million websites and application on the internet developed

using PHP scripting language.

This may be attributed to the points raised above;

The diagram below shows some of the popular sites that use PHP

Web hosting Supported by almost all hosting servers Needs dedicated server Fairly supportedNeeds

dedicated server

Open source

PHP File Extensions

File extension and Tags In order for the server to identify our PHP files and scripts, we must save the file

with the “.php” extension. Older PHP file extensions include

.phtml

.php3

.php4

.php5

.phps

PHP was designed to work with HTML, and as such, it can be embedded into the HTML code.

What is PHP? Write your first PHP Program

You can create PHP files without any html tags and that is called Pure PHP file .

The server interprets the PHP code and outputs the results as HTML code to the web browsers.

In order for the server to identify the PHP code from the HTML code, we must always enclose the PHP

code in PHP tags.

A PHP tag starts with the less than symbol followed by the question mark and then the words “php”.

PHP is a case sensitive language, “VAR” is not the same as “var”.

The PHP tags themselves are not case-sensitive, but it is strongly recommended that we use lower case

letter. The code below illustrates the above point.

<?php … ?>

We will be referring to the PHP lines of code as statements. PHP statements end with a semi colon (;). If

you only have one statement, you can omit the semi colon. If you have more than one statement, then

you must end each line with a semi colon. For the sake of consistency, it is recommended that you

always end your statement(s) with a semi colon. PHP scripts are executed on the server. The output is

returned in form of HTML.

PHP Hello world

The program shown below is a basic PHP application that outputs the words “Hello World!” When

viewed in a web browser.

<?php

echo "Hello world";

?>

Output:

Hello world

Summary

PHP stands for Hypertext pre-processor

PHP is a server side scripting language. This means that it is executed on the server. The client

applications do not need to have PHP installed.

PHP files are saved with the “.php” file extension, and the PHP development code is enclosed in tags.

PHP is open source and cross platform

You Might Like:

PHP Data Types, Variables, Constant, Operators Tutorial

PHP Date() & Time Function: How to Get Current Timestamp?

PHP Function: Built in, String, Numeric with Examples

PHP preg_match(): Regular Expressions (Regex)

PHP Loop: For, ForEach, While, Do While [Example]

What is XAMPP?

XAMPP is an open-source, cross-platform web server that consists of a web server, MySQL database

engine, and PHP and Perl programming packages. It is compiled and maintained by Apache. It allows

users to create WordPress websites online using a local web server on their computer. It supports

Windows, Linux, and Mac.

It is compiled and maintained by apache. The acronym XAMPP stands for;

X – [cross platform operating systems] meaning it can run on any OS Mac OX , Windows , Linux etc.

A – Apache – this is the web server software.

M – MySQL – Database.

P – PHP

P – Perl – scripting language

Why use XAMPP?

XAMPP provides an easy-to-use control panel to manage Apache, MySQL, and other programs without

using commands. To use PHP, we need to install Apache and MySQL. It’s not easy to install Apache and

configure it as it needs to be set up and integrated with PHP and Perl, among other things. XAMPP deals

with all the complexity to set up and integrate Apache with PHP and Perl.

Unlike Java that runs with the Java SDK only, PHP requires a web-server to work.

1) This section lists the installed services, modules and the process IDs PID(s). A green tick means the

module has been installed as a service. The red mark means it has not been installed as a service. To

install a service, click on the red mark. If the button shows a green tick and you click on it, the control

panel will ask you if you want to uninstall the system.

2) This section shows Port(s) associated with the modules. The actions section is for;

starting and stopping modules

Open the administrative windows for Apache and MySQL

Open configuration files for Apache, MySQL etc. to make changes

View log files for the modules

3) This section contains useful utilities such as Netsat, windows services short cuts etc.

4) This section displays status information on the modules. The control panel can be used to;

Install and uninstall services such as Apache, MySQL etc. that are installed via XAMPP

Start and stop services.

Open configure files etc.

Configure XAMPP

Let’s now look at the basic configurations required before we start using our XAMPP installation for

developing PHP powered web sites. Type the URL http://localhost/xampp/ in your favorite browser. For

this tutorial, we will be using Firefox as our web browser.

Download and Install XAMPP & Netbeans

If you are able to see the above screen then you have installed XAMPP successfully. The panel on the left

hand side contains links to useful information such as;

The version of PHP installed

Security settings of XAMPP

Access to utilities such as phpMyAdmin etc.

The PHP version shipped with XAMPP 1.8.0 is PHP 5.4.4

What is the best PHP IDE?

A PHP IDE is a program that allows you to easily write PHP codes. PHP IDEs are often equipped with

syntax highlighting features and in some cases autocomplete features too. This means that if you write a

PHP keyword that is known by the PHP interpreter, then the keyword will be highlighted a different

color from the one used for regular statements. The autocomplete features automatically pops up

known PHP keywords as you type them. Notepad can also be used to write and editor PHP codes. The

disadvantage of using an editor such as Notepad is that debugging the scripts becomes difficult because

it is not easy to spot errors such as misspelt keywords, unclosed braces etc. an IDE will highlight the

statements with errors so it’s easy for you to spot them. The table shown below shows 5 popular PHP

editors

Editor License Cross Platform Brief description

Netbeans IDE Open Source Yes

Dedicated PHP coding environment with syntax highlighting and code completion for keywords and

other known information.

Supports integration with PHP MVC frameworks i.e. Zend,

Code History that shows the changes made to a file

SFTP,FTP and SVN via plugins.

Dreamweaver Commercial Yes

Supports HTML and PHP.

Syntax highlighting, code folding and completion for keywords and other known information.

Supports SFTP and FTP.

Zend studio Commercial Yes

Integrated with Zend Server and Zend PHP MVC framework, PHPUnit, phpDocumentor etc.

Has syntax highlighting, code folding,

Support for Web services etc.

PHP Eclipse Open Source Yes

Code formatter

Supports SVN, SHH/FTP

Notepad ++ Freeware Windows only

Syntax highlighting

Supports SFTP and FTP via plugins.

Netbeans IDE PHP editor As briefly highlighted in the above table, Netbeans IDE has powerful features

that enhance the productive of PHP coders. The IDE can be freely downloaded from the

https://netbeans.org/downloads/index.html

Syntax highlighting and auto-complete features enhances your productivity

It has native support for database systems like MySQL. You don’t need to use two programs to code and

develop your database.

The IDE can be used in a collaborative environment. This comes in handy when you have to work with

other developers as a team.

The IDE has support for other languages such as;

Java SE

Java EE

C

C++

In PHP, a variable is declared using a $ sign followed by the variable name. Here, some

important points to know about variables:

o As PHP is a loosely typed language, so we do not need to declare the data types

of the variables. It automatically analyzes the values and makes conversions to its

correct datatype.

o After declaring a variable, it can be reused throughout the code.

o Assignment Operator (=) is used to assign the value to a variable.

Syntax of declaring a variable in PHP is given below:

1. $variablename=value;

Rules for declaring PHP variable:

o A variable must start with a dollar ($) sign, followed by the variable name.

o It can only contain alpha-numeric character and underscore (A-z, 0-9, _).

o A variable name must start with a letter or underscore (_) character.

o A PHP variable name cannot contain spaces.

o One thing to be kept in mind that the variable name cannot start with a number

or special symbols.

o PHP variables are case-sensitive, so $name and $NAME both are treated as

different variable.

PHP Variable: Declaring string, integer, and float

Let's see the example to store string, integer, and float values in PHP variables.

File: variable1.php

1. <?php

2. $str="hello string";

3. $x=200;

4. $y=44.6;

5. echo "string is: $str
";

6. echo "integer is: $x
";

7. echo "float is: $y
";

8. ?>

Output:

string is: hello string

integer is: 200

float is: 44.6

PHP Variable: Sum of two variables

File: variable2.php

1. <?php

2. $x=5;

3. $y=6;

4. $z=$x+$y;

5. echo $z;

6. ?>

Output:

11

PHP Variable: case sensitive

In PHP, variable names are case sensitive. So variable name "color" is different from

Color, COLOR, COLor etc.

File: variable3.php

1. <?php

2. $color="red";

3. echo "My car is " . $color . "
";

4. echo "My house is " . $COLOR . "
";

5. echo "My boat is " . $coLOR . "
";

6. ?>

Output:

My car is red

Notice: Undefined variable: COLOR in C:\wamp\www\variable.php on line 4

My house is

Notice: Undefined variable: coLOR in C:\wamp\www\variable.php on line 5

My boat is

PHP Variable: Rules

PHP variables must start with letter or underscore only.

PHP variable can't be start with numbers and special symbols.

File: variablevalid.php

1. <?php

2. $a="hello";//letter (valid)

3. $_b="hello";//underscore (valid)

4.

5. echo "$a
 $_b";

6. ?>

Output:

hello

hello

File: variableinvalid.php

1. <?php

2. $4c="hello";//number (invalid)

3. $*d="hello";//special symbol (invalid)

4.

5. echo "$4c
 $*d";

6. ?>

Output:

Parse error: syntax error, unexpected '4' (T_LNUMBER), expecting variable

(T_VARIABLE)

 or '$' in C:\wamp\www\variableinvalid.php on line 2

PHP: Loosely typed language

PHP is a loosely typed language, it means PHP automatically converts the variable to its

correct data type.

PHP has three types of variable scopes:

1. Local variable

2. Global variable

3. Static variable

Local variable

The variables that are declared within a function are called local variables for that

function. These local variables have their scope only in that particular function in which

they are declared. This means that these variables cannot be accessed outside the

function, as they have local scope.

A variable declaration outside the function with the same name is completely different

from the variable declared inside the function. Let's understand the local variables with

the help of an example:

File: local_variable1.php

1. <?php

2. function local_var()

3. {

4. $num = 45; //local variable

5. echo "Local variable declared inside the function is: ". $num;

6. }

7. local_var();

8. ?>

Output:

Local variable declared inside the function is: 45

File: local_variable2.php

1. <?php

2. function mytest()

3. {

4. $lang = "PHP";

5. echo "Web development language: " .$lang;

6. }

7. mytest();

8. //using $lang (local variable) outside the function will generate an error

9. echo $lang;

10. ?>

Output:

Web development language: PHP

Notice: Undefined variable: lang in D:\xampp\htdocs\program\p3.php on line 28

Global variable

The global variables are the variables that are declared outside the function. These

variables can be accessed anywhere in the program. To access the global variable within

a function, use the GLOBAL keyword before the variable. However, these variables can

be directly accessed or used outside the function without any keyword. Therefore there

is no need to use any keyword to access a global variable outside the function.

Let's understand the global variables with the help of an example:

Example:
File: global_variable1.php

1. <?php

2. $name = "Sanaya Sharma"; //Global Variable

3. function global_var()

4. {

5. global $name;

6. echo "Variable inside the function: ". $name;

7. echo "</br>";

8. }

9. global_var();

10. echo "Variable outside the function: ". $name;

11. ?>

Output:

Variable inside the function: Sanaya Sharma

Variable outside the function: Sanaya Sharma

PHP Operators

PHP Operator is a symbol i.e used to perform operations on operands. In simple words,

operators are used to perform operations on variables or values. For example:

1. $num=10+20;//+ is the operator and 10,20 are operands

In the above example, + is the binary + operator, 10 and 20 are operands and $num is

variable.

PHP Operators can be categorized in following forms:

o Arithmetic Operators

o Assignment Operators

o Bitwise Operators

o Comparison Operators

https://www.javatpoint.com/php-operators#Arithmetic
https://www.javatpoint.com/php-operators#Assignment
https://www.javatpoint.com/php-operators#Bitwise
https://www.javatpoint.com/php-operators#Comparison

o Incrementing/Decrementing Operators

o Logical Operators

o String Operators

o Array Operators

o Type Operators

o Execution Operators

o Error Control Operators

We can also categorize operators on behalf of operands. They can be categorized in 3

forms:

o Unary Operators: works on single operands such as ++, -- etc.

o Binary Operators: works on two operands such as binary +, -, *, / etc.

o Ternary Operators: works on three operands such as "?:".

Arithmetic Operators

The PHP arithmetic operators are used to perform common arithmetic operations such

as addition, subtraction, etc. with numeric values.

Operator Name Example Explanation

+ Addition $a + $b Sum of operands

- Subtraction $a - $b Difference of

operands

* Multiplication $a * $b Product of

operands

/ Division $a / $b Quotient of

https://www.javatpoint.com/php-operators#Incrementing
https://www.javatpoint.com/php-operators#Logical
https://www.javatpoint.com/php-operators#String
https://www.javatpoint.com/php-operators#Array
https://www.javatpoint.com/php-operators#Type
https://www.javatpoint.com/php-operators#Execution
https://www.javatpoint.com/php-operators#Error

operands

% Modulus $a % $b Remainder of

operands

** Exponentiation $a ** $b $a raised to the

power $b

The exponentiation (**) operator has been introduced in PHP 5.6.

Assignment Operators

The assignment operators are used to assign value to different variables. The basic

assignment operator is "=".

Operator Name Example Explanation

= Assign $a = $b The value of right

operand is

assigned to the

left operand.

+= Add then

Assign

$a += $b Addition same as

$a = $a + $b

-= Subtract

then Assign

$a -= $b Subtraction same

as $a = $a - $b

*= Multiply

then Assign

$a *= $b Multiplication

same as $a = $a *

$b

/= Divide then

Assign

(quotient)

$a /= $b Find quotient

same as $a = $a /

$b

%= Divide then

Assign

(remainder)

$a %= $b Find remainder

same as $a = $a %

$b

Bitwise Operators

The bitwise operators are used to perform bit-level operations on operands. These

operators allow the evaluation and manipulation of specific bits within the integer.

Operator Name Example Explanation

& And $a & $b Bits that are 1 in

both $a and $b are

set to 1, otherwise 0.

| Or

(Inclusive

or)

$a | $b Bits that are 1 in

either $a or $b are

set to 1

^ Xor

(Exclusive

or)

$a ^ $b Bits that are 1 in

either $a or $b are

set to 0.

~ Not ~$a Bits that are 1 set to

0 and bits that are 0

are set to 1

<< Shift left $a << $b Left shift the bits of

operand $a $b steps

>> Shift right $a >> $b Right shift the bits of

$a operand by $b

number of places

Comparison Operators

Comparison operators allow comparing two values, such as number or string. Below the

list of comparison operators are given:

Operator Name Example Explanation

== Equal $a == $b Return TRUE if $a is

equal to $b

=== Identical $a ===

$b

Return TRUE if $a is

equal to $b, and

they are of same

data type

!== Not

identical

$a !== $b Return TRUE if $a is

not equal to $b,

and they are not of

same data type

!= Not equal $a != $b Return TRUE if $a is

not equal to $b

<> Not equal $a <> $b Return TRUE if $a is

not equal to $b

< Less than $a < $b Return TRUE if $a is

less than $b

> Greater

than

$a > $b Return TRUE if $a is

greater than $b

<= Less than

or equal to

$a <= $b Return TRUE if $a is

less than or equal

$b

>= Greater

than or

equal to

$a >= $b Return TRUE if $a is

greater than or

equal $b

<=> Spaceship $a <=>$b Return -1 if $a is

less than $b

Return 0 if $a is

equal $b

Return 1 if $a is

greater than $b

Incrementing/Decrementing Operators

The increment and decrement operators are used to increase and decrease the value of

a variable.

Operator Name Example Explanation

++ Increment ++$a Increment the value

of $a by one, then

return $a

$a++ Return $a, then

increment the value

of $a by one

-- decrement --$a Decrement the value

of $a by one, then

return $a

$a-- Return $a, then

decrement the value

of $a by one

Logical Operators

The logical operators are used to perform bit-level operations on operands. These

operators allow the evaluation and manipulation of specific bits within the integer.

Operator Name Example Explanation

and And $a and $b Return TRUE if both $a

and $b are true

Or Or $a or $b Return TRUE if either

$a or $b is true

xor Xor $a xor $b Return TRUE if either

$ or $b is true but not

both

! Not ! $a Return TRUE if $a is not

true

&& And $a && $b Return TRUE if either

$a and $b are true

|| Or $a || $b Return TRUE if either

$a or $b is true

String Operators

The string operators are used to perform the operation on strings. There are two string

operators in PHP, which are given below:

Operator Name Example Explanation

. Concatenation $a . $b Concatenate

both $a and $b

.= Concatenation

and

Assignment

$a .= $b First

concatenate $a

and $b, then

assign the

concatenated

string to $a, e.g.

$a = $a . $b

Array Operators

The array operators are used in case of array. Basically, these operators are used to

compare the values of arrays.

Operator Name Example Explanation

+ Union $a + $y Union of $a and $b

== Equality $a == $b Return TRUE if $a

and $b have same

key/value pair

!= Inequality $a != $b Return TRUE if $a is

not equal to $b

=== Identity $a ===

$b

Return TRUE if $a

and $b have same

key/value pair of

same type in same

order

!== Non-

Identity

$a !== $b Return TRUE if $a is

not identical to $b

<> Inequality $a <> $b Return TRUE if $a is

not equal to $b

PHP If Else

PHP if else statement is used to test condition. There are various ways to use if

statement in PHP.

o if

o if-else

o if-else-if

o nested if

PHP If Statement

PHP if statement allows conditional execution of code. It is executed if condition is true.

https://www.javatpoint.com/php-if-else#if
https://www.javatpoint.com/php-if-else#if-else
https://www.javatpoint.com/php-if-else#if-else-if
https://www.javatpoint.com/php-if-else#nested-if

If statement is used to executes the block of code exist inside the if statement only if the

specified condition is true.

Syntax

1. if(condition){

2. //code to be executed

3. }

Flowchart

Example

1. <?php

2. $num=12;

3. if($num<100){

4. echo "$num is less than 100";

5. }

6. ?>

Output:

12 is less than 100

PHP If-else Statement

PHP if-else statement is executed whether condition is true or false.

If-else statement is slightly different from if statement. It executes one block of code if

the specified condition is true and another block of code if the condition is false.

Syntax

1. if(condition){

2. //code to be executed if true

3. }else{

4. //code to be executed if false

5. }

Flowchart

Example

1. <?php

2. $num=12;

3. if($num%2==0){

4. echo "$num is even number";

5. }else{

6. echo "$num is odd number";

7. }

8. ?>

Output:

12 is even number

PHP If-else-if Statement

The PHP if-else-if is a special statement used to combine multiple if?.else statements.

So, we can check multiple conditions using this statement.

Syntax

1. if (condition1){

2. //code to be executed if condition1 is true

3. } elseif (condition2){

4. //code to be executed if condition2 is true

5. } elseif (condition3){

6. //code to be executed if condition3 is true

7.

8. } else{

9. //code to be executed if all given conditions are false

10. }

Flowchart

Example

1. <?php

2. $marks=69;

3. if ($marks<33){

4. echo "fail";

5. }

6. else if ($marks>=34 && $marks<50) {

7. echo "D grade";

8. }

9. else if ($marks>=50 && $marks<65) {

10. echo "C grade";

11. }

12. else if ($marks>=65 && $marks<80) {

13. echo "B grade";

14. }

15. else if ($marks>=80 && $marks<90) {

16. echo "A grade";

17. }

18. else if ($marks>=90 && $marks<100) {

19. echo "A+ grade";

20. }

21. else {

22. echo "Invalid input";

23. }

24. ?>

Output:

B Grade

PHP nested if Statement

The nested if statement contains the if block inside another if block. The inner if

statement executes only when specified condition in outer if statement is true.

Syntax

1. if (condition) {

2. //code to be executed if condition is true

3. if (condition) {

4. //code to be executed if condition is true

5. }

6. }

Flowchart

Example

1. <?php

2. $age = 23;

3. $nationality = "Indian";

4. //applying conditions on nationality and age

5. if ($nationality == "Indian")

6. {

7. if ($age >= 18) {

8. echo "Eligible to give vote";

9. }

10. else {

11. echo "Not eligible to give vote";

12. }

13. }

14. ?>

Output:

Eligible to give vote

PHP Switch Example

1. <?php

2. $a = 34; $b = 56; $c = 45;

3. if ($a < $b) {

4. if ($a < $c) {

5. echo "$a is smaller than $b and $c";

6. }

7. }

8. ?>

Output:

34 is smaller than 56 and 45

PHP For Loop

PHP for loop can be used to traverse set of code for the specified number of times.

It should be used if the number of iterations is known otherwise use while loop. This

means for loop is used when you already know how many times you want to execute a

block of code.

It allows users to put all the loop related statements in one place. See in the syntax

given below:

Syntax

1. for(initialization; condition; increment/decrement){

2. //code to be executed

3. }

Parameters

The php for loop is similar to the java/C/C++ for loop. The parameters of for loop have

the following meanings:

initialization - Initialize the loop counter value. The initial value of the for loop is done

only once. This parameter is optional.

condition - Evaluate each iteration value. The loop continuously executes until the

condition is false. If TRUE, the loop execution continues, otherwise the execution of the

loop ends.

Increment/decrement - It increments or decrements the value of the variable.

Flowchart

Example

1. <?php

2. for($n=1;$n<=10;$n++){

3. echo "$n
";

4. }

5. ?>

Output:

1

2

3

4

5

6

7

8

9

10

Example

All three parameters are optional, but semicolon (;) is must to pass in for loop. If we

don't pass parameters, it will execute infinite.

1. <?php

2. $i = 1;

3. //infinite loop

4. for (;;) {

5. echo $i++;

6. echo "</br>";

7. }

8. ?>

Output:

1

2

3

4

.

.

.

Example

Below is the example of printing numbers from 1 to 9 in four different ways using for

loop.

1. <?php

2. /* example 1 */

3.

4. for ($i = 1; $i <= 9; $i++) {

5. echo $i;

6. }

7. echo "</br>";

8.

9. /* example 2 */

10.

11. for ($i = 1; ; $i++) {

12. if ($i > 9) {

13. break;

14. }

15. echo $i;

16. }

17. echo "</br>";

18.

19. /* example 3 */

20.

21. $i = 1;

22. for (; ;) {

23. if ($i > 9) {

24. break;

25. }

26. echo $i;

27. $i++;

28. }

29. echo "</br>";

30.

31. /* example 4 */

32.

33. for ($i = 1, $j = 0; $i <= 9; $j += $i, print $i, $i++);

34. ?>

Output:

123456789

123456789

123456789

123456789

PHP Nested For Loop

We can use for loop inside for loop in PHP, it is known as nested for loop. The inner for

loop executes only when the outer for loop condition is found true.

In case of inner or nested for loop, nested for loop is executed fully for one outer for

loop. If outer for loop is to be executed for 3 times and inner for loop for 3 times, inner

for loop will be executed 9 times (3 times for 1st outer loop, 3 times for 2nd outer loop

and 3 times for 3rd outer loop).

Example

1. <?php

2. for($i=1;$i<=3;$i++){

3. for($j=1;$j<=3;$j++){

4. echo "$i $j
";

5. }

6. }

7. ?>

Output:

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

PHP For Each Loop

PHP for each loop is used to traverse array elements.

Syntax

1. foreach($array as $var){

2. //code to be executed

3. }

4. ?>

Example

1. <?php

2. $season=array("summer","winter","spring","autumn");

3. foreach($season as $arr){

4. echo "Season is: $arr
";

5. }

6. ?>

Output:

Season is: summer

Season is: winter

Season is: spring

Season is: autumn

For more details of foreach loop, click here.

PHP foreach loop

The foreach loop is used to traverse the array elements. It works only on array and

object. It will issue an error if you try to use it with the variables of different datatype.

The foreach loop works on elements basis rather than index. It provides an easiest way

to iterate the elements of an array.

In foreach loop, we don't need to increment the value.

Syntax

1. foreach ($array as $value) {

2. //code to be executed

3. }

There is one more syntax of foreach loop.

https://www.javatpoint.com/php-foreach-loop

Syntax

1. foreach ($array as $key => $element) {

2. //code to be executed

3. }

Flowchart

Example 1:

PHP program to print array elements using foreach loop.

1. <?php

2. //declare array

3. $season = array ("Summer", "Winter", "Autumn", "Rainy");

4.

5. //access array elements using foreach loop

6. foreach ($season as $element) {

7. echo "$element";

8. echo "</br>";

9. }

10. ?>

Output:

Summer

Winter

Autumn

Rainy

PHP Arrays

PHP array is an ordered map (contains value on the basis of key). It is used to hold

multiple values of similar type in a single variable.

Advantage of PHP Array

Less Code: We don't need to define multiple variables.

Easy to traverse: By the help of single loop, we can traverse all the elements of an array.

	Doc1
	17 BCA I SEM I
	6 BCA I SEM I
	19 BCA I SEM II
	21 BCA I SEM II
	51 BCA I SEM II
	Logic Gates���By�Mrs. Deshpande M.K.�
	Logic Gates
	Basic Gates
	Derived Gates
	Derived Gates with Truth Table
	Thank you.

	53 BCA I SEM II
	2 BCA II SEM II
	14 BCA II SEM III
	20 BCA II SEM IV
	3 BCA II SEM IV
	45 BCA II SEM IV
	47 BCA II SEM IV
	50 BCA III SEM VI
	ASP.NET
	What is ASP.Net?
	ASP.Net Web Forms Model
	ASP.Net Component Model:
	Components of .Net Framework
	Visual Studio IDE
	Visual Studio IDE
	Ways to work with views and windows
	Projects and Solutions
	Building and Running a Project:
	ASP.Net Page Life Cycle

	56 BCA III SEM IV
	Hibernate Framework�			Created by Rapelli
	Objective
	Limitations of JDBC
	What Is The	Solution
	How Data Can Be Stored Using Java?
	How data can be stored using RDBMS?
	MVC design pattern
	What Problems May Occur?
	Solution
	Java ORM Frameworks
	Hibernate
	What Hibernate does?
	Hibernate Advantages
	Hibernate Architecture (high level)
	Hibernate Architecture (details)
	Configuration Object
	SessionFactory Object
	Session Object
	Transaction Object
	Query Object
	Criteria Object
	What properties in .cfg.xml file ?
	Hibernate.cfg.xml file
	Example pojo.hbm.xml file
	Generator
	Assigned
	Increment
	Sequence
	hilo
	Identity
	Foreign
	What is Component Mapping ?
	What is Component Mapping ?
	Inheritance Mapping
	Table per	class Hierarchy
	Table per	class Hierarchy
	Table per	class Hierarchy
	Table per	concrete class
	Table per	concrete class
	Table per	subclass
	Table per	subclass
	Hibernate Association (Collection Mapping)
	One to One mapping
	One to One mapping
	One to Many Mapping
	One to Many Example
	Many to Many Mapping
	Many to Many Mapping
	Slide Number 49
	Query Interface
	Query Interface
	Syntax
	Clauses in HQL are:
	Clauses in HQL are:
	HQL :
	HQL update query
	HQL delete query
	Hibernate - Criteria Queries
	Restrictions with Criteria
	Criteria examples
	HQL vs Criteria
	HQL vs Criteria
	Caching In Hibernate
	Caching...
	caching
	First Level cache
	Second	level cache
	Second	level cache
	Second	level cache
	Second	level cache

	7 BCA III SEM V
	8 BCA III SEM V
	15 BCA II
	16 BCA II
	36 BCA II SEM III
	18 BCA III SEM VI
	11 BCA III
	Introduction of AngularJS
	Objective
	Overview of AngularJS
	What is AngularJS?, Why AngularJS?
	Features of AngularJS
	AngularJS architecture
	Slide Number 7
	AngularJS Advantages�
	 Setting up the Environment
	My first AngularJS app
	Directives
	Introduction to Directives
	Directive lifecycle
	Using AngularJS built-in directives
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Conditional Directives
	Style Directives
	Mouse and Keyboard Events Directives
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Matching directives
	Slide Number 26
	Creating a custom directive
	Slide Number 28
	Angular Expression
	All about Angular expressions
	How to use expressions
	Number
	String Expressions
	Object Binding and Expressions
	Working with Arrays
	Slide Number 36
	Forgiving Behavior
	Angular expressions v/s Javascript expressions

	39 BCA

